6평 대비 킬캠 가형 후기
게시글 주소: https://old.orbi.kr/00012070574
먼저 퀄리티 제 생각에는 시중모고나 ebs모고에 비해 훨씬 좋았던거 같아요
이거 보고 해설 들으면서 현우진 쌤 때문에 메가 안산걸 후회하게 되더라고용
21번, 29번, 30번은 해설 들어도 모르겠네요 개 빡대가리라서;;
한가지 흠은 제 종이만 그런지 몰라도 너무 잘 찢어졌어요ㅠ
한번 다른 님들도꼭 풀어보시길!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저 지금까지 5년동안 헛산거같아요.... 이거 진짜 오래된건데 왜 안먹었지...
-
악몽 꿨네 0
꿈속에서 누구한테 버림받고 공황 오다가 깼는데 깨니까 그게 누구였는지 기억이 안난다...
-
이번주 토요일날까지만 다니고 기숙학원 들어가기 2주 전부턴 집에서 쉬면서 준비하기로...
-
그런거지?
-
화2 질문 0
화2에서 꼭 암기해야하는거나 암기하면 문풀에서 수월한것들 있나요?
-
일단 낙지 점공기준 제 앞에 7명 맞춤
-
답인 1번이 대놓고 개소리인거같긴한데 4번이 약간 헷갈려서 정답률이 낮은걸까요?
-
ㅈㄱㄴ
-
수2는 전부 이어지는 내용이라 기억이 나는데 수1은 까먹은 부분이 좀 있네요.. ㅜ...
-
휴학에 참가한 의대생들 전원 사형집행 하기로 결정 25학번 수업은 무리없이 진행될 예정
-
검사했는데 결과는 안뜨고 다시하려면 다시하라그러고 옘병할
-
고시류는 탈락하면 진짜 낫띵인데 의대준비하다가 의대성적 안나오면 낫띵이 아니라...
-
망했어요 오늘은 외진때문에 넘어가지만 내일부터 문젠데
-
28수능부터 시행되는 통사통과로 어떻게 변별할지 너무 기대됨 1
개같이 기대된다
-
나도 작년에 못맞추긴했고 난 맞췄는데 올해 최저 충족률 어케 되려나... n수...
-
연고대 문과 가려면 사탐선택자는 연대로, 과탐선택자는 고대로 3
모일수밖에 없다라는 예측을 봤는데, 나름 일리가 있더군요. 일단 연고대 레벨의...
-
국어 잘한다고 생각했고 이때까진 망해도 백99는 떠왔는데 올수는 진짜...
-
피램 병행 가능한가요? 재수생임 현역 X
-
ㅈㄱㄴ
-
정승제쌤이 어제 롯데월드 간다는건 이미 예견된 일이었음뇨 개때잡 확통 2단원...
-
제가 국어 시간이 오래걸리는 이유가 이거 때문인거 같습니다. 0
예를 들어 8번 문제에서도 1번 선택지에서 "한성순보가 간행된 취지는 서양에...
-
인스타 내리다 떠서 봣는데 H2O의 약자가 뭔가요? 화학고수님 답변부탁드립니다...
-
우리의승리다
-
산속에 난 길이어서 ㄹㅇ 개무서웠음
-
전공탱이라 가야돼...
-
어릴때는 포뇨 아빠가 포뇨 괴롭히는거 때문에 겁나 싫었는데 지금 다시보니까 포뇨...
-
난 xx을 잘해->많이함 이게 무한 싸이클이 돌고 그러는듯 반대도 마찬가디 난 xx을 못해->안함
-
대성은 무조건 수학 1타가 한석원이었던거 같은데
-
난 햇빛만 존나나는데
-
28학년도부터는 정시 100프로로 대학 가는거 없어지죠? 3
내신 구리면 정시길도 막히는.... 그럼 자퇴생이랑 장수생들은 어떻게 되는거지?
-
아아 기대된다 2
나는 어느 대학을 갈것인가!! 어느 지방에서 캠퍼스라이프를 즐길것인가!! 킥킥킥킥킥킥킥
-
예쁘긴하다 햇빛에반사되면더예뻐짐
-
종강하고 클쓰보내고 바로 돌입할 것 식단 + 유산소 + 근력 이렇게 간드앗
-
국어 ㅠㅠㅠ
-
식메추 (식사 메뉴 추천)
-
올해 수능친 현역인데 국수영은 222 뜰것같은데 과탐 물1 지1이 4가 떠서 투과목...
-
본책값만 36000,34000이네 ㅋㅋㅋ워크북하고 확통까지 들으면 면 기본개념강좌에...
-
나만그냥잤지
-
으흐흐히흐히히 30
화1 죽어라 히흫히히히흐히
-
맛있게. 먹어라.
-
25학년도 의대 모집 정지 (new!) 한의학은 정말 과학적인 학문인가? 의대...
-
수1을 너무 못한다..
-
수능 끝난 지금도 여전히 이해 안 가는 유일한 문제 7
9평 국어 10번 ㅋㅋㅋ.. 틀린 애들은 국어 못하는거란 말 볼때마다 짜증났음 내가...
-
주로 쓰는 손이 좀 박살났는데 ㄱㅊ?
-
공스타 현역들 10
ㅋㅋㅋ 6,9모 엄청 화려한 애 비활타더니 아예 안오네
-
저는 봉사하는 마음으로 자원하겠습니다
-
커피는 먹다가 머리가 너무 아파서 이젠 안먹으려고요… 너어무 졸린데 다들 잠 어떻게...
-
이제서야 구렁텅이에서 벗어난다
저는 포장지가 예뻐서 다시 넣어서 고이 보관해뒀어요 ㅋㅋ
포장지 짱이뻐요 정성스러운듯
이거 신청안했으면 못보죠? ㅠㅜ
넹...
저는 29번이 제일 어렵.. 아직이해안됨ㅋㅋㅋ
솔까 아직도 이해못하겠어요ㅠ
21.30이 전 오히려 쉬운듯..
29는 음 AX가 2인것만 찾으면 어렵지 않아요
해설지는 해설지대로 보시되 AX가 2에서 삼각형 AXB가 이등변인것을 이용해요 각AXB를 theta라두고 그 범위가 0이상 ㅠ/2이하인것에 착안하면 어렵지 않아요ㅎ
21근데 h가 f>4x인 x부터 x가 증가함에 따라 그 차이가 증가해 무한대까지 가기에 h의 최대가 없어요 물론 최소도 마찬가지구요...조건(나)가 모순이에요
아하 모순인가여?? 전 그 쪽은 손도 못돼서 몰랐네요;;
아;;;네넹
그....g가 증가잖아요 그럼 g안의 f-4x가 어느 x의 값부터 x가 증가함에 따라 증가한다면 g의 치역은 어차피 실수 전체이므로 계속증ㅈ가하겠죠 근데 f의 식을 구하면 알수 있듯이 f와 4x의 교정은 분명히 a에 상관없이 발생하고 그럼 그 점이후부턴 x가 증가시 f-4x도 그 값이 증가합니다 그래서 엇쨌거나 Lim x->inf 일때 f-4x ->inf에서 h는 무한대를 향해 갑니다 따라서 최대는 없고 마찬가지로 최소도 없어요
따라서 전 조건 (나)가 묻는 취지는 극대 극소지만 잘못됬어요
오 지금 저도 그거 때문에 검색하고 있었는데ㅋㅋ
풀때는 딱봐도 무한대같은데 극대극소아니면 절대 답이 안나와서 그냥 극대극소라고하고풀었음ㅋㅋㅋ
근데 서점에서 실모나봉투모의고사안팔죠??ㅠㅜ