6평 21번, 심층분석 및 다항함수의 전개
게시글 주소: https://old.orbi.kr/00012187583
21번의 수험생의 가장 상식적인 풀이에 대하여 알아봅시다.
---------------------위는 요약이고 상식적인 풀이를 정리해봅시다.--------------------
처음에는 단순히 인수정리로 f(x)=(x-1)p(x)라 둔 후, 정리하고 또 p(x)=(x-1)q(x)라 둔 후 정리해서 다음까지는 온 학생이 많았을 것입니다. (물론, 핵심이 느껴져서 f(x)=(x-1)^n p(x)라 뒀으면 그 자체로 훌륭한 것이고요.)
이렇게 논리적으로 f(x)를 구했는데 여기서 바로 두번째 극한으로 넘어가지 말고, 식을 직관적으로 이해하려는 시도가 필요합니다. 주어진 식에서 3이 무엇을 의미할까? 생각해보면 인수정리를 여러번 하면서도 느꼈겠지만 f(x)에서 (x-1)이라는 인수가 몇번 들어가 있느냐?가 극한값임을 파악할 수 있습니다. 항상 이렇게 직관적으로 느껴보는 것이 필요함을 명심하도록 하구요. 거의 모든 어려운 문제는 직관과 논리를 오가며 풀이가 진행됩니다.
처음부터 (x-1)^n이 중요하다고 생각한 학생은 훌륭하지만, 그렇지 못한 학생이라도 (x-1)^3을 구한 후에는 직관적으로 느낄려고 노력하는 과정이 필요합니다.
여기까지 왔는데, 함수의 극한값을 구할 때에는 모두 수렴하는 함수로 표현하는 것이 핵심입니다.
앞에 주어진 극한인 의 의미를 파악한 상태에서 이를 이용하기 위해 식을 변형해봅시다.
인데 의 의미를 생각하면, 아래와 같이 극한값이 한정되는 것을 알 수 있습니다.
물론 직관적으로 못느낀 학생이라면 또 g(x)=x p(x), p(x)= x q(x) 등 무한 인수정리를 반복해야합니다. 최소한 f(x)=x^m p(x), g(x)=x^n q(x)라 식을 세웠다면 조금이라도 삘이 온 학생이겠죠.
이므로 이 됩니다.
따라서 f(x)에서는 x의 인수가 1개 존재해야 하므로 f(x)=x(x-1)^3이고 g(x)에서 x의 인수가 3개 존재해야 하므로 g(x)=x^3이다.
-----------------------------------------------------------------
문제 풀이는 여기서 끝입니다.
-----------------------------------------------------------------
포인트를 몇가지 분석해봅시다.
사실 인수정리를 한 번쓰는 문제야 수도 없이 출제가 되었지만 이렇게 1번 2번 3번쓰고 거기에 미분까지 동원해야하는 문제는 이 문제가 유일합니다. 유사한 발상을 한 번도 경험해보지 않은 학생에게는 매우 어려웠을 것인데, 이 발상은 (x-a)^n의 중복도와 매우 깊은 관계가 있는 다음 유명한 극한에서 자주 나오는 발상입니다.
(x-a)^1으로 나온 문제는 많이 봤을것이고, 다음 문제 (x-a)^2 또한 조금만 어려운 문제집을 경험해봤다면 자주 봤을 문항인데요.
위 문제에서 인수정리에 의하여 f(x)=(x-a)g(x)이라 한 후, 대입하고 또 g(x)=(x-a)h(x)라 한 후 대입 그리고
두 식을 미분해서 정리해야 f'(a), f''(a)를 찾을 수 있습니다. 물론 f(x)=ax^n ... 이라 두고 푸는건 자유이긴 하나 일반적으로 증명하기 위해선 인수정리가 온당합니다. 이 식은 실제로 고려대 논술에서도 출제가 되었고 유명한 주제이기도 하니 한번 쯤 경험해두도록 합시다.
한가지 주제를 더 보도록 할텐데, 다음은 교과서에 있는 내용입니다.
교과서의 조립제법 내용인데 위의 내용은 거의 모든 교과서에서 탐구활동이나 문제로 출제가 되고 있습니다.
즉, 위를 보면 모든 다항함수는 f(x)=ax^3+bx^2+cx+d=p(x-1)^3+q(x-1)^2+r(x-1)+s 정도로 얼마든지 정리할 수 있음을 알 수 있고요. 솔직히 공부를 많이한 학생이라면 이정도는 눈에 들어올 것이고, 어려운 문제집에서 접해본 경험도 있을 것입니다. 그런 학생일수록 직관적으로
와 같은 식이 인수 (x-1)^n을 뜻한다는 것이 훨씬 더 잘 와닿을 것입니다. 평소에 많이 경험을 해보고 문제를 풀어보는 것의 중요성이고, 그 과정에서 직관력과 논리력이 모두 늘 것입니다. 위와 같이 발상이 되는 사람은
으로 주어진 식에 대입하면 b=c=d=0과 a=/=0이 매우 쉽게 관찰될 것이고, (x-1)이라는 인수의 중복도가 중요함을 즉각적으로 눈치챌 수 있을 것입니다. 그게 된다면 뒤 극한부터도 일사천리이고요. 여기까지 이해하고, 다음 기출문제를 봅시다.
이 기출문제에서 x->0을 보면 우리 기출을 많이 보고 열심히 풀고 결과까지 외운 학생들은 최저차항의 계수를 뜻한다는 것을 쉽게 알 수 있을 것입니다.
위와 같이 평행이동되어 응용된다 해도, 제대로 기출을 공부한 학생이라면 c=d=0, b=2가 바로 보이는 학생이 되면 좋겠죠. 즉 (x-1)^2을 인수로 갖는 것이고, 그 계수가 2라는 것이죠.
이제 이 글 http://orbi.kr/00012149457 을 다시 보면 왜 발상적인 풀이가 아닌지 느껴질 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아직 수시도 안끝났는데 너무 멀리 생각하는 걸까요 이번년도가 거의 마지막 기회라 부담이 심하네요;
-
인터넷 보니 하루에 1회씩 시간 재서 풀고 분석하는걸 추천하시던데 1회를 2일정도에...
-
벌써 7시반이군 0
얼버기할시간
-
사람은 안바뀐다 노력도 재능이다 이런 말을 너무 많이 들었는데 현역때나 재수때나...
-
비록 하는 일에 비해 얻는 돈은 보잘것없지만 멏년간 방구석에 앉아서 공부만 해와서...
-
빠른07인데 06이랑 친구먹으려하면 아니꼽개보나요?
-
일주일째 유입 0명임요 소수과라서 ㄹㅇ 불안한데 원서 마감 직전에 봤을때는...
-
진짜 궁금한게 6
수학 잘하시는분들은 글씨가 개판이던데(귀납척 추론에 의한 일반화) 왜 그런건가요?...
-
제정신인가 ㄹㅇ 무슨 경찰을 폭행하고 유리창을 깨고 어휴…난 주변에 저런 노인들 없겠지?
-
지금 일어난게 아니라 아직 안잤어요...
-
아직 영어 기본이 잘 안잡혀서 그러는데 우연히 키스타트 책을 얻었는데 구문편+단어...
-
프사 바꿈 6
주먹.
-
3합기원 0
ㅈㄱㄴ
-
내신 bb라는 가정하에 설대식 몇점정도가 최초합권 일까여? 서울대 기계 설대식 점수 수능
-
증명이란 특정한 공리들을 가정하고, 그 가정하에서 어떤 명제가 참이라는 것을...
-
안녕하세요 저는 오래전에 수능을 쳤던 연세대 경영학과 졸업생입니다 (제가 요즘...
-
현역 언미화1생1 94 80 50 42 수학 강대k랑 서바는 백분위 96~99 정도...
-
아 너무 힘드네
-
윤 대통령 지지자들 난동…법원 유리창 깨고 난입·경찰 폭행 10
윤석열 대통령에 대한 구속영장이 발부된 뒤, 윤 대통령 지지자들이 법원 유리창을...
-
기차지나간당 6
부지런행
-
그렇게 어벤져스가 탄생했다. 한놈은 싸가지 없는 새기 한놈은 말많은 새기 한놈은...
-
오루비 잘 자 2
-
오르비 죽었다 !! 25
-
나 대학 신입생 풋풋한 시절 과친구도 없고 혼자 6개월동안 수업듣고 수업끝나면...
-
알바회식 끝 0
일은 두시애 끝났는데 술을 3시간 동안 마시네 피곤해...
-
글리젠이 멈쳤네 2
이거 조금 숨막히는데… 슬슬 자야할 시간인가 보네.. 오르비 좋은꿈꾸세요
-
닭때 보수 불태운다그럴때 태웠어야하는데 ㅅㅂ
-
ㅁㅁ세계 멸공의 마녀가 되었습니다 경제사범 영애님은 은팔찌 차기 싫어요! 괴담 호텔...
-
소문이 어마무시하던데 진짜 (과장좀 보태서)아동학대 수준인가요…? 숙제/공부량이...
-
경희대 신설 자유전공(국제)이고 54명 모집입니다. 진학사랑 텔그 마감 직전...
-
100원을 10원이라고 부르면 됨
-
아카데미 악당영애 교정하기 진짜 개재밌네
-
쓰담쓰담 2
뭐랄까, 지나다니는 사람마다 사랑하다고 말하고 싶은 기분이네… 사랑해 사랑해의...
-
옥냥이 유투브 보면 됨 하루 넘는 영상도 올라옴ㅌㅋㅋㅌㅋㅌㅋㅌㅋㅌㅋㅌ 막 30...
-
풀영상이나 스트리밍 영상으로는 절대 안봄 뇌가 숏츠에 익숙해져서 숏츠만 봄
-
7등인데 계산기 상으로는 9등으로 뜨는데 이거 맞나요?
-
다들 자 인제 10
-
김윤 저새끼는 진짜 간첩같다
-
미묘한 하찮음 진짜 제 취향이에요
-
유튜브 구독창 24
그외 이렐킹 저라뎃 코뚱잉 클리드 등등... 롤창의 구독 목록
-
진동하지 않을 수가 없잖아.
-
이 아스발.. 0
그래 이번시즌 포기하고 다치지 말고 챔스만 가자 내년에 형 수능치고 대학붙고 올게...
-
서울대 8명 모집하는 과 점공 8등입니다. 16등 분이 1차합 하셨고 인증도...
-
의대 늘리고 싶어서 늘리는거고 전공의도 하기 싫다 해서 나가는거고 의대생도 휴학하고...
-
18년부터 지금까지보다 도파 기다렷던 시간이 훨 긴거같애
-
다행
-
자야지 1
응
-
왕자 잘게 6
코코낸내
-
ㅁㄹ 안 지워 7
언젠가의 나는 하겟지
-
수능 끝나면 그 많던 고닉들 소리소문없이 사라진다더니 2
아직도 있네요
사진이안뜨는것같은데요
혹시 보이면 댓글좀 부탁드려요!
갓갓
이 글 이해원하는분들은 지금이라도 http://atom.ac/books/3853 를 구입하셔서 3회독을 하시면
이런 글을 쓸 수 있습니다
머장님 1, 2 번째사진빼고 싹엑박뜹니다 ㅠㅠ
새벽부터 감사합니다 ㅋㅋ 이제 보이나요?
네네 ! 좋은자료 항상 감사합니다 !
갓갓..
21번 심층분석 ㄷㅅㅂㄱ
머장님 감사합니다!!
어 저도 sinx 나와서 x 곱해서 풀었는데 극한식에서 막 이렇게 곱해도 되나 궁금했는데 시중풀이가 저처럼 푼 풀이가 없었어요... 역시 해원님!!!!
30번 다항함수 풀때는 한완수 도움 많이 받았습니다 감사합니다
잘 푸셨네요 대단하세요 ㅋㅋ
윽 한번 이렇게 냈으니 올해 다시는 킬러로 이런 스타일은 못나오겠구만요
그것보다는 인수정리 등 논리적 계산을 거치면서도 그 식이 가지는 의미를 직관적으로 파악하려고 노력하는 과정. 킬러문제에서 항상 반복되는 직관과 논리를 오가며 풀이가 진행되는 과정 등을 파악하는 것이 공부겠죠ㅎㅎ
리미트가 분모 분자로 배분될때 분자가 0으로 가면 어떻하나.. 하는 생각에 쉽사리 배분을 못했는데 의문점을 한방에 해결해주시는군요. 감사합니다. 한완수도 호기심이 생기네요.
이해원모의고사 언제나와요?
(x-1)^n놓고 꽤 쉽게 풀었는데 끝나고보니 21이 가장 어렵단 말이 많더군요
딱 저렇게 풀어서 거의 6분컷...그리고 29번에서 털렸죠 ㅠ