"실수가 아니다. 실력이다."
게시글 주소: https://old.orbi.kr/00029945701
1
취미로 수학을 공부하고 있습니다.
순수하게 논리적 사고를 키우는 데 수학만한 게 없다는 생각이 들기도 했고,
또 관심분야 공부하는 데 도움이 될 것 같아서 고교 수학을 다시 공부하고 있습니다.
취미로 공부하는 터라, ebs나 유튜브 등 무료채널을 이용할 수도 있었습니다.
하지만 김지석 선생님의 '수학의 단권화'로 공부하는 게
가장 효율이 높다고 생각해서 과감히 프리패스를 끊었습니다.
(수학의 단권화 한 강좌 결제하는 것보다 프패가 저렴했어요.)
참고: 저도 오르비클래스 강사로 활동 중.
2
저는 국어 콘텐츠 만들 때, 보통 영어 교재/강의를 보며 영감을 많이 받아왔습니다. 물론 '국어의 기술'(언어의 기술)을 처음 낼 때는 수학의 정석을 모범으로 삼긴 했으나, 이후에는 수능영어 혹은 성인영어 콘텐츠에서 배울 때가 많았습니다.
참고로 요즘 큰 사랑을 받고 있는, 제 시그니처 강좌 전기추1은 정지웅 선생님 437 구문독해로부터 영감을 많이 받았습니다. (아래는 제가 작년 11월에 오르비 관계자 분께 보낸 메일입니다.)
그런데 정말 오랜만에, 김지석 선생님의 수학 콘텐츠를 보며 저도 이런 콘텐츠를 만들어야겠다는 생각이 들더라고요. 내년부터 올릴 PSAT/LEET 기본강좌는 '수학의 단권화'와 컨셉이 비슷하지 않을까 싶습니다. ㅎㅎ
최근에 김지석 선생님이 올린 글에도 나오지만,
업계에서 누구도 만들지 못했던 최고의 컨텐츠를 만들자.
대체 불가능한 최고의 컨텐츠를 준비한 다음에 인강을 다시 시작하자."
치열한 준비끝에 올해 오르비 인강으로 다시 돌아왔습니다.
'대체 불가능한 최고의 콘텐츠'라는 말이 헛말이 아니라는 것을 느낍니다. 형식도, 내용도 정말 참신하고, 무엇보다 얇은 교재로 모든 것을 정리할 수 있다는 점이 제가 지향하는 바와 일치하여 동질감도 많이 느꼈습니다.
3
말이 길었습니다. 이게 노미 받은 거 자랑하려고 쓰기 시작한 겁니다.
3월 해설지의 (극히 사소한) 오타 잡아낸 덕분에 받을 수 있었습니다. 히히.
원래는 완강 후 수강평 올리고 받으려고 했던 건데, 먼저 받았네요. 완전 씐나요. 그래서 이렇게 길게 주저리주저리 적어봤네요. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오른쪽 아래 방향을 +라 잡으면 가 상황에서의 가속도는 +a, 나 상황에서 A와B의...
-
제가 없는 사이에 무슨 일이...
-
한국사 퀴즈. 5
고려의 왕으로 노비안검법을 시행한 왕은? 1000덕 드림
-
국어 높1에 수학4 기괴한표본이 많음
-
뭐 그렇습니다.
-
난 확실하다 생각하고 찍어버리는데 보류 자체를 못함ㅋㅋㅋ "이렇게도 볼 수 있지...
-
수학 수특 수완 2
선별된 거 없나요
-
어떤 놈이 실내흡연하는데 땡중이 말리니까 어차피 다 같은 연기인데 알빠노 하니까...
-
시작할때 개쫄아서 못풀줄알앗는데 그래듀 풂 흐핳 난도는 쉬운거같긴한데 어쨋든...
-
사만다 final 안하면 원점수 3점 떨어짐;
-
2개 더빼드림 어차피 2개는 확실히 안나오는거면 2개밖에 안걸러준거니까 정없으니...
-
항상 모고 보면 딱 20번 남겨두고 끝나네 이걸 어째 순서를 바꿔야하나;; 저같은...
-
수능 국어영어 노베가 수능 국어영어 개념 공부하는 것엔 매3시리즈로 충분함?
-
경희대 아닌가요?
-
준킬러빨라짐 킬러를이제거의다풀수있음좀느리지만...
-
세계사 퀴즈 2. 13
야마가타 아리토모가 반포한 것으로 신민들아 "천황에 충성하여라"라는 내용을 담고...
-
보정임 무보정은 처참
-
뭔가 그럼 촉이왔음
-
못푸는 병이 있는데 이감 기술지문은 걍 이해가 안됨 제품 사용 설명서 읽는 기분임
-
애초에 수험판에 다시 들어오지 않았만큼 행복했다면?
-
모르는 단어로 오답 선지는 안 만든다는데 작년 수능 고전시가의 "겸양"의 뜻을...
-
답이뭐노
-
수학 한정 2컷판독기임 ㄹㅇ
-
닉값마렵네 4
ㄹㅇ.
-
1년 ㅈ빠지게 공부해서 서울대 다 뚫을 성적으로 의대와서 의대 현실보고 다시...
-
세계사 퀴즈 1000덕 19
오스트리아 헝가리 제국에서는 영토를 2가지로 구분했습니다. 라이타강의 안쪽에 있는...
-
노베이스인데 수능 만점 가능할까요
-
다들 이런건 극복 어캐하셨나용 대가리 한번 깨부수면서 비벼보는수밖에 없나..
-
더프 등급컷 2
그거 보정 안 된거죠? 안 된거라고 해주세요..아니 왜 저렇게 높지..?
-
찍맞없이 기하 80점인데 쉽다는 9모도 84고 10모도 80이고... 사설은 잘...
-
코로나 시절 누구없소부터 계속 봤는데 안 좋은 노래가 없네
-
1시부터 지금까지 공복인데 ㅠㅠ
-
맞팔구해요 8
-
귀납적 수열 풀 시간에 딴 단원 기출 더 볼까여... 다른 수열 기출들은 거의 다...
-
실수도 수3은 ㅈ으로 봄
-
국어 실모 95 받아놓고 수학 실모 76 받는.... 국어는 그래도 80점 중후반은...
-
물음표 던지깃 ~!!!!!!!
-
하는김에 현대시까지 21
이감 중요도 aa a중에 안나올거같은거(내가 수험생이었으면 과감히 버릴거) 어느날...
-
작수보다 어려운거 맞죠 ㅠ 컷이 어떠케 될까요
-
오답해떠! ㅎ 3
시발... 이렇ㅅ게 쉬운문제를 씨발!!!!!0
-
이거 6모급이네요.. 진짜 웬만해서 빈칸 자체를 안틀리는데 33/34 둘다 날려먹고...
-
미친 파이널 실모 계획 12
욕심은 많지만 능지가 부족한 자의 최후... 하루에 실모 8개씩 풀고 수능에피 드가자!!!
-
그거전데
-
앞으로 실모에서 미지수 깡으로 두개 잡는 도형문제 내면 10
회사 찾아가서 똥갈기고 옵니다 조심하십쇼 진짜
-
1. 수능 정시비율은 교육부 지침 없이 대학 재량으로 0퍼하고싶으면 0퍼...
-
오늘 푼 실모에서 실수를 적게 해서 감사합니다 탐구를 한과목만 반영하는 대학이 있어...
-
12 13 15 21 22 틀... 12번: 도형인데 아예 무슨 상황인지를 인지를...
-
실모 매일 보는 사람들 정체가 뭐지 답 없는 인생이네요 콘서타 용량 늘리기도 이제는 불가능하고
-
날먹ㄱㄱ
전설의 레전드...
해황님 넘 멋있으신 거 아닙니까..
내년에는 키스 구독해보겠습니다. ㅎㅎ
수학의 기술 출판예정
'수학의 기술' 쓸 뻔한 썰! (by 국어의 기술 저자의 '진로' 이야기)
https://youtu.be/WzNk-KvhMUs
알아봐주지 않아도 묵묵히 하려 했습니다만! 역시 칭찬은 고래를 춤추게하는군요! 얼쑤!
여러분! 모든 공부는 기출이 중요합니다.
그냥 풀어본 정도가 아니라 가장 깊은 수준의 분석까지 하는것이지요~
전기추! 핫핫!
제 생각이 맞았네요.
어제 독서 기출 지문 중에
16 9평 b형 '헴펠의 설명이론' 지문보고 바로 깨달았죠. 수학의 논리적 사고도 문제 풀고 지문 독해하는데 도움이 되는구나 라고요.
거기서 보면 "어떤 것이 건전한 논증이면 그것은 반드시 설명이다." 라는 정답 선지가 나오죠.
지문에 근거하면 "헴펠에 따르면 설명은 세 가지 조건을 모두 충족해야 한다." 라는 문장이 핵심입니다. 지문 보시면 아실겁니다.
위 정답 선지는 마치 수2 함수의 연속 조건과 똑같은 논리 구조를 갖습니다.
어떤 함수가 연속이려면 세 가지 조건을 모두 충족해야한다, 라는 명제에 의거하여
어떤 함수에 극한값이 존재하면 그 함수는 연속이다, 라는 명제는 거짓이 되죠.
이 논리 구조를 정답 선지와 근거한 문장에 대입시켜보면 똑같습니다.
어떤 명제가 헴펠에 따르면 설명이 되기 위해 세 가지 조건을 모두 충족해야하는데
어떤 것이 건전한 논증이면 그것은 반드시 참이다, 라는 명제는 거짓이 되죠.
왜냐면 건전한 논증이라고 해서 그것은 반드시 참이 되지 않거든요. 함수의 연속 세 가지 조건을 모두 충족해야 함수가 연속이듯이
어떤 것이 헴펠이 정의한 설명이 되려면 헴펠의 세 가지 조건을 모두 충족시켜야됩니다.
이 문제가 정답률 50프로 육박한게 어떻게 보면 당시 학생들이 이 논리적 사고를 못해서 맞다고 넘겼을거라 추측합니다.
"P이면 Q이다." 라는 명제가 참이다고 해서
"Q이면 P이다." 라는 명제가 참은 아니듯이..
어떤 취지로 말씀하셨는지는 알겠지만, 그래도 오개념을 방지하기 위해 진지하게 댓글을 달아보자면,
1. 참은 명제에, 건전한/타당한은 논증에 적용시킬 수 있습니다.
2. (추론의 결과로서) 어떤 명제가 항상 참이 아니라는 것과, 그 명제가 거짓이라는 것은 다릅니다.
아 진짜요?
1번과 2번에 대해서 왜 그러한지 좀 더 여쭙고 싶은데 시간 되신다면 제가 긴히 쪽지로 질문드러도 될까요?
공부가 끝나면 제가 쪽지 드리겠습니다.
아... 진짜로 오개념을 갖고 있었군요;;
1은 설명할 게 없습니다. 그냥 받아들이면 됩니다.
2는 "P이면 Q이다."가 참일 때, "Q이면 P이다."가 항상 참은 아닙니다. 그렇다고 하여 "P이면 Q이다."가 참일 때,"Q이면 P이다."가 (항상) 거짓이라고 단정지을 수는 없습니다. P=Q인 경우가 가능하니까요. 이 정도면 대략적인 설명이 되었을 거라 생각합니다. :)
아 감사합니다.
해황쌤 덕에 오늘도 제 논리력과 논리적 사고력 스탯이 +10 오른 느낌입니다.
항상 제게 영감을 주시네요.
참고로 1의 경우 기출에서도 다뤄진 적 있고, 이를 '머리야 터져라' 6강에서 제가 자세히 언급하기도 했어요. :)
https://class.orbi.kr/course/1793
레전드 해황 빠그
아 ㅋㅋ 너무 귀여우신거 아닙니까
컨텐츠 연구하시는게 멋지십니당
잘읽었습니다