이해원모의고사 1회 29번 풀이 과정에 대한 질문입니다.
게시글 주소: https://old.orbi.kr/0003063188
해설지를 보니 이면각의 정의를 이용한 풀이를 하던데요.
면 QPA 와 면 QOA가 이루는 이면각을 a, 면 QOA와 면 QAB가 이루는 이면각을 b라고 나누어
생각한 다음, cos(a+b)를 이용해서 풀었는데 논리적 오류가 없을까요?
먼저 각 a는 선분PA가 선분 OA, QA와 모두 수직이라 애초에 정사영이 생기지 않으므로
그림자의 면적이 0이라 cosa=0이라고 계산했구요.
각 b는 선분 QA와 선분 OA(연장선) 위에 점 B에서 수선의 발을 내린 다음 양쪽 직각을 만들어
삼수선의 정리를 이용해 cosb= (root6) / 3 으로 구했습니다.
이후에 cos 덧셈정리를 이용해 구해도 cos(a+b)는 - (root3)/3 으로 나오네요.
제곱하면 1/3이구요.
해설지의 풀이도 중간과정까진 생각했는데 삼각형 QAB가 직각이라는 사실을 빨리 못찾아서
결국 이렇게 풀었네요. 혹시 어쩌다 얻어걸려서 답만 같은건지 불안해서요. 확인 좀 ^^;;;
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 1
어딜 감히
-
크아악 4
대학가고 싶다 정확히는 옮기고 싶다 수능날 아파서 결국 원서질도 못 해보는게 너무...
-
저다들많이좋아해요 여러분이제유일한친구에요 다들잘됐으면좋겠어요
-
ㅇㅈ 5
-
국어 수학 영어 정법 사문 한국사 80 98 3 96 96 1 영어 한국사는...
-
현재 7~8칸이면 걍 발뻗고 성적발표까지 누워도 댈가용
-
아그냥 우울하네 3
연세대도 분명 좋은 학굔데.. 머리로는 알고 있는데.....
-
おやすみ 15
-
ㅇㅈ은 다시 봉인 군대가기전에 한번더 할 수도?
-
인증메타후기 4
나랑같이n수해서의대가자
-
자야지 1
눈이 감기네
-
후다면 너무 슬플거같음
-
문재인 정부 사드 도입 늦추기 위해 중국·시민단체에 기밀 유출 의혹…검찰 수사 착수 1
문재인 정부 당시 안보라인을 책임지던 고위직 인사들이 사드(THAAD·고고도 미사일...
-
흠
-
반수 성공하고 바로 입대, 의대 증원하길래 올해 수시 준비해서 한 번 더 뛰어들어서...
-
스펙 평가좀 2
숏치고 조졋음뇨
-
아니면 무조건 시험 종료시까지 고사장에 있어야하나요?? 대학 시험처럼 시험치고...
-
형아... 3
웅웅
-
어디가 좋을까요?
-
턱걸이 20개는 땡겨야 남자라고 생각함뇨이
-
S7 액정이 좀 깨져서 터치가 좀 답답해졌어요ㅠ 액정가는데 16만원정도...
-
'사드' 지연 위해 중국에 2급 기밀 유출…도마 오른 文 정부 안보관 0
전임 문재인 정부와 더불어민주당의 안보관이 도마에 올랐다. 최근 감사원이 문재인...
-
ㅇㅈ 13
펑
-
ㅈㅅㅎㄴㄷ.. 1
-
입실시간 제외 순 시험시간이요!!
-
ㅇㅈ 6
펑.
-
진짜 완벽한 고대상이다..
-
옛날엔 현실의 예쁜 사람 보면 기분 좋아지고 그랬는데 이제는 그냥 아무런 감정이...
-
ㅇㅈ 13
못 생김 주의) 펑
-
ㅠㅠ
-
여잔데 친구없을까봐 ㅇㅇ
-
본거또보고 17
다음에혼자인생네컷이라도찍으러갈께요
-
ㅇㅈ 4
펑
-
미쿠짤 1
영역전개 “미쿠만발”
-
아무도 안 보겠지???
-
재탕올리면 본거또보고 라고댓달릴 확률99%라 못하겠어요
-
원래 멀티를 개잘햇거든요? 근데 요즘은 하나에 꽂히면 그냥 그것밖에 못해요 예를들어...
-
"도미노 현상" 공장 줄줄이 폐쇄…'K-철강' 쇠퇴의 그늘 0
산업의 쌀이라 불리는 한국의 철강 업체들이 줄줄이 공장 문을 닫고 있습니다. 중국의...
-
요즘 헬스하는데 0
진짜 근육통이 너무심함 미치겠따
-
일주일에 150분 이상 운동했더니 나타난 효과... 평균 사망 위험 22% ‘뚝’ 0
빠르게 걷기, 자전거 타기 등 중강도 신체활동(PA)을 일주일에 150분 이상 하면...
-
ㅇㅈ 2
사실 그런 건 없고 제가 좋아하는 민지 짤 보고 가세요
-
거기 지나가는 당신! 31
여캐일러 하나 주고 가요
-
그것은 바로 주식 안 하기! 주식 하는 사람들이 돈을 잃기에 나는 가만히 있으면...
-
쪼끄매서 귀여움
-
ㅇㅈ 16
숏충이의말로ㅇㅈ
-
물2 어카디 1
현역이고 물1베이스 나름 있는데 1) 물2 과외받으면서 전적 의존(나름 고수에...
-
욕하고는싶었는데 대댓달려서 박제당할용기는없는거임?
-
아니나성희롱당한것같음 11
여행중길거리를지나가다가가게아저씨가컴인싸이드라고했는데 이거이상한뜻맞죠어떻게이런말을할수가있죠?????
-
궁금
-
표본 들어오기 전보다 칸수 올랐나요
세평면 QPA, QBA, QOA 모두 QA 를 하나의 교선으로 가지고 있기때문에 위의 방법대로 풀어도 전혀 논리적 모순 없습니다.
QA에 수직이 되는 평면으로 잘라 단면화 해보시면 결국 님이 말한 삼각함수의 덧셈정리를 이용한 풀이로 귀결 되는것을 알 수 있습니다.
다만 각 b를 구하는 방법에 대해서는 좀 의문이네요..
모든 변의 길이를 구해보면 QBA는 정삼각형이고 , 따라서 B에서 교선 QA 상에 내린 수선의 발은 선분 QA 의 중점에 찍히게 됩니다.
다시 한번 확인해 주셨으면 합니다 .
해설지처럼 QA의 중점을 M이라고 했을때. 그것이 점 B에서 내린 수선의 발인것은 맞습니다.
그리고 점 B에서 평면 QOA에 내린 수선의 발은 점 O가 아닙니다.(각BOA가 120도이기 때문에)
따라서 선분OA의 연장선 위에 점 B에서 먼저 수선의 발을 내리고, 그 점을 C라 하면 선분 BC의 길이는 root6 입니다. (직각삼각형 ACB이고, 각 CAB가 30도이므로)
그럼 BM의 길이가 3이고 BC의 길이가 root6이므로 cosb(이면각의 정의로 만들어진)=root6 / 3 입니다.
저도 그렇게 푼듯하네요. 공간좌표넣어서 햇더니..