기하와벡터 정말 잘하는법...
게시글 주소: https://old.orbi.kr/0003212061
너무나도 간절합니다..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
무슨 말을 하고싶은거임
-
저게 맞을 것 같다는 느낌이..
-
57754 솔직히 놀았습니다.. 내년에 공군 입대해서 틈틈히 베이스 쌓고 제대와...
-
온라인에서 확인할 때 미리 인증서가 있어야한다는데 제가 수험표를 잃어버려서 까먹었는데 괜찮나요?
-
미카링
-
강민철쌤 새기분까지만 듣고 김승리쌤 커리 넘어가려하는데 1
어떤 강의부터 시작하는 게 좋을까요?
-
화작 85 0
선택-5 2컷 절대 안댈라나ㅜ
-
혼코노 ㅇㅈ함 4
약간의 변조와같이 펑
-
읏흥흥
-
냥논붙여줘 1
하 입실까지 11시간
-
백분위 언90 미66 생81 지 나락 11점에 영어 4인데 어느 대학 갈 수...
-
둘 다 좋은 책인데 가격이슈로인해… 하나만 초이스해야할듯
-
그딴거 없어요 왜냐하면 저는 올해 6모 하나만 집모로 쳐봤기 때문이죠 그 뒤론...
-
장기자랑이란건 4
배를 스스로 갈라서 내장을 보여주는거겠죠..?
-
백분위 터진 42 1등급 나오고 40점 표본 부족으로 10.xx후 백분위 터진 39 2등급 희망
-
아니죠??
-
47이 겁나 많은건가
-
저는 중학교때 영대비학원 친구
-
서울대 낮은과에서 복전하며 삶이 많이 힘들어질까요..
-
올1보다 한 두 개 2 뜨고 미적 99 100이 더 많네 왜 그런 거여?
-
ㅈㄱㄴ
-
군수 하기 전에 1
사탐런 할건데 사탐 개념이라도 끝내 놓을까요? 3월 입대 할거 같은데..
-
작년 내내 물지 붙잡고 공부했는데 수능때 문제 하나에 말려서 탐구만 백분위 엄청...
-
유대종 기실해 독서에 내신 범위 들어가는 지문이 있어서 듣고 싶은데 기실해 언매만...
-
아 여대가고싶다 2
그러나 남자라서 ㄴ하나가 더 붙어이썩
-
수학 백분위 99가 왜케많지 ㅈㄴ위축됨 그거보다가 오르비 들어왓는데 수학88...
-
과탐 98 95면 연고 라인에서 탐망/잘 중 어디에 속하나요? 이 라인에서...
-
화작 1컷 2
93이 1등급 뜰 확률 0에 가깝겠죠…화작 1이 안 뜨면 토요일 논술 최저 못...
-
심리적으로... 삼수 해보니까 사수도 하고싶네요 올해 안끝내면 초장수생 루트 탈듯
-
남대가고싶다 14
땀에젖은옷킁카킁카
-
희망고문 당함
-
지2는 ㄹㅇ재밌어보임
-
낮에 노래방 갔는데 아예 아무도 없는거임,,, 그래서 맘놓고 애니오프닝 몇곡 조짐요...
-
대가리 깨질뻔 ㅎㅎ
-
ㄹㅇ…
-
개국 0
근데 궁금한 게 있는데 약대 나와서 취업하고 회사 다니면서 약국 차려놓을 수...
-
실모기만질ㅇㅈ 7
네
-
논술 수험표 1
컬러로만 뽑아야 하나요? 흑백 안 됨??
-
그치 이거지 ㅠㅠㅠㅠㅠ
-
여대가고싶다고만 올렸더니 먼... 단체로 조롱에 어이가 없내요 찡찡거려서 ㅈㅅ...
-
어그로 ㅈㅅ 연고서성한중경 컴공이나 공대 희망하는데 물지 -> 지구사문 어떤가요
-
공부인증 8
3강도 들으려했으니 81분이라 포기.
-
클리드방송보기 2
흐흐
-
현역 고민상담 0
현역때 물1 지1을 선택한 학생입니다. 이번 수능에서 탐구는 45 42로 나쁘지않은...
-
on 3
치지직
-
미적88 확통94 기하91 예상 절망회로 풀가동
-
신청한김에 영어독해문제집 풀어보고싶은데 어떤강의가 좋은가요???
벡터는 크게 대수학적 활용과 논증 기하학을 벡터로 해석하는 것 두가지로 분류할 수 있습니다.
벡터의 대수적 활용은 보통 어렵지 않으니 패스하고
결국엔 기하에서 벡터를 적용하는 것이 관건이라 할 수 있죠. 공간도형과 이차곡선 역시 마찬가지로 대수적인 부분보단 논증기하에서 약하기 때문에 털리는 겁니다.
따라서 논증기하를 잘하면 기하와 벡터는 커버됩니다.
그니까 지금 당장 서점에 가서 에이급수학이라던가 고난도수학 따위의 교재를 사서 중등기하를 공부합니다. ㄱㄱ
중학교 개념에 충실히하란 말씀이신가요??.
중등기하 라는 건 아마 중고등학교 기하를 이야기하시는 게 아닐까요.. 그리고 실제로 중학교 2,3학년 때 나오는 기하 (요새도 다 배우지요?)를 적절히 잘해두고 응용할 줄 알면, 어려워보이는 고등학교 기하 문제라든가 수능 기하 문제들 중 상당수가 더 쉬워보일 거라는 생각이 듭니다.
기하와 벡터의 경우 단원이 일차변환, 이차곡선, 공간기하, 벡터 이렇게 4개의 과로 분류할 수 있는데요,
일차변환 이차곡선 같은 경우보다는 공간기하와 벡터에 대해 고민이 있으신듯합니다....
공간 기하의 경우
기본 평면 기하에 대한 이해가 충실하여야 공간에 대한 이해가 가능합니다.
일반적으로 공간 기하는 원, 삼각형 으로 나누거나 쪼개어 지게 되는데, 여기서 평면기하에 대한 성질들을 잘 아시면 좋습니다. (가령 5:12:13 의 비율이 나오면 직각 삼각형임을 안다거나....)
또한 공간기하는 묻는 대상물이 대부분 각이나 길이 면적 정사영등을 묻게 되는데
이러한 공간기하의 문제를 해결할수 있는 키포인트는
공간상의 면 또는 선분 또는 입체의 위치 관계의 이해입니다.
공간 도형을 보게 되시면 어떻게 위치관계를 이해할것인가. (가령 평행 꼬인위치 수직 등등등) 에 대해 초점을 두시면서 학습하시면 될듯 합니다.
위치관계의 이해를 직관적으로 할려면 그림을 좀 많이 그려보시는걸 추천드리구요.... 논증적으로 할려면 좌표나 벡터의 도움을 받으시면 될듯 합니다.(가령 수직인 근거...)
하지만 절대 공간 도형은 직관 이나 논증 '만'으로 해결 되지는 않습니다... 직관으로 접근하고 논증적으로 뒷받침 해나가면 될듯 합니다.
벡터의 경우
많은 분이 벡터가 공간도형 좌표와 '만' 관련되있다고 생각하십니다만, 물론 공간도형의 해석에서 벡터가 이용되는것 뿐이구요,,,,
사실 벡터라는 내용 자체가, '복잡한 움직임을 쉽게 하기 위해 쪼개어서 생각하자' 라는 아이디어가 베이스입니다...
하지만 벡터라는 내용이 고등 수학에서는 대부분 기하적 해석 (최대 최소 / 벡터방정식등...) 으로 쓰이지요...
그러니 벡터를 보실때 단순히 보시기보다는 벡터를 분해하시는 쪽으로 계속 보시면서 벡터의 식이 무엇을 의미하는지...
의미적인 부분을 캐치하시는 연습이 중요하지 않을까 생각합니다...... ('내적했을때 최대'의 의미 / 식의 의미 등...)
올해 9월 평가원 29번 같은 경우도 벡터 식을 통해 벡터의 위치관계를 추론하는것이 핵심이었습니다.
작년 수능 최대 최소 문제도 식을 이해하되, 분해하여 생각한다는것이엇구요.....
사실 공간도형과 벡터는 상당 부분이 많이 부딛혀 보고 직관적인 부분을 기르는것이 살짝 중요하다 생각합니다.
공간이라는 내용 자체가 쉽게 다룰수 있는 부분이 아닌만큼 직관을 통해 풀면서 논증적으로 직관을 채워나가는것이 중요하다 생각해요^^
P.S. 어디까지 개인적인 생각일 뿐입니다. ㅋㅋ 참고만 해주세요^^