자작 수열 정오판별
게시글 주소: https://old.orbi.kr/0003253292
자작이라곤 해도 여기저기 줏어들은 아이디어를 살짝 바꿔 만든 문제입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사반수로 의대를 쟁취한다.
-
수수학공부할라는데 시발점 들을라고하거든요 근데 불륨이 좇돼더라고여 짧은 강의 듣고...
-
소수과임 지금까지 40명 실제지원 변표뜬다고 1000점 만점 점수가 막 2~3점씩...
-
기상 6
-
ㅇㅈ 10
펑
-
맞팔 하실분 4
잡담태그 잘 달아요
-
보실 분 있을까요? 성적은 11222 나왔어요 물론 씹갓용 칼럼은 당연히 아니고...
-
ㅇㅈ 14
펑
-
https://blog.naver.com/pyjlawyer/223364239734...
-
올해 정시준비하려다 크게 데이고 한학기 학교 다니고 군대가서 학종 원서만 넣어보려고...
-
코가 막 가려움 0
재채기가 나올락 말락
-
미자공 친구가 한양대 두바퀴 투어시켜주고 노천극장가서 하냥대 명물 피자를 먹었는데...
-
어제 사실 17
특정을 당할뻔 했어요 대댓글 달리면 안지워진다는걸 어제 알았답니다 이러면서 배우는거겠죠..?
-
서연고서성한중+카포지디유까지 추천해주네 엄... (내 성적표 아님) 그래고 포는...
-
재수생입니다 올해는 꼭 메디컬 가고싶은데 이 성적으로 어디까지 갈 수 있나요?
-
지각이다 3
입에 빵을 물고 달리자
-
요약 : 분만시 문제가 있어 적절한 처치를 시행하였으나 아이가 뇌성마비가 생겼음....
-
뻘글좀 줄여야지 4
너무 많이 썼당
-
1,2번은 별 탈 없이 쓴거같고 3번 수리문제도 풀이과정이랑 정답 다 맞는데 이러면...
-
현재 활동한단 뜻인가요??
-
현역이고 1년동안 시대단과커라 탈거같은데 미적반에서 수12도 해주나요? 현우진도...
-
랑 친구하고 싶다
-
새벽에 인증메타였음? 12
누가인증했나요? 또나만못봤지
-
물리 사탐런 0
재가 지금 고2 모고 맨날 2등급 초반 나오는데 고삼때 사탐런 해야할까요? 가산좀이 좀 크길래...
-
그딴거 없나요
-
오늘도 과탐 등급 질문을 또 합니다 ㅋㅋ (시간 보내기용 ㅠ) 시갤에서 쓴 글 중에...
-
전세계 누구보다 의사를 많이 만나면서도 전세계 누구보다 의사를 못믿는 한국인들이란 도대체....
-
애초에 저거 외운다고 수학문제를 풀 수 있는건 아니잖아
-
기차지나간당 10
칙칙폭폭
-
피곤하고 슬픈 아침 12
-
국어 2.5 수학 5.5 탐구 1.5 영어 0.5 로 하려하는데 어떤가요?
-
내용 연결되는 게 많나요?
-
군수 해야겠음 0
리트 잘칠 자신 있는데(130이상) 현재 학교에서 학점을 개말아먹어서 4.2-3까지...
-
이번에 사탐런 해서 개념은 임정환T 들을건데 도표특강까지 정환쌤껄로 가도...
-
공군입대 때문에 12월 15일 시행되는 kbs 한국어능력시험에 응시할 예정입니다....
-
라고 땅우쌤이 말씀하시던데 (만점기준) 사실인가요?
-
왠지 팝콘각이 보인다
-
오늘 여행간다 0
키키
-
수학잘하는사람은 쎈만하고 자신이 못하고 삼등급정도이하다 마플 ㄱㄱ
-
작수 백분위 77 확통 정병호 비기너스 + 쎈 4점 기출 스타팅 블록 + 카이스...
-
현역 1등급 언매 특강 샘 추천좀 ㄱㄱ
-
시위는 이런과격하고 인간 본성의 동물적본성을 드러내야 그것이 투쟁이고 시위의...
-
예비고3 수학 모고 거의 2등급이고 (한번은 3등급) 미적 노베인데 이정환t 미적...
-
가능세계는 없는거니....
-
화1 1컷 50 사문 1컷 45~46 생윤 40점보다 표점이 낮다는 소문이......
-
올해의 첫 수학 N제를 모두의 친구에게 선물받음
-
힝
아.... ㄷ 인가요? 이런 형식의 문제는 가르치기 너무 힘들어요....^^;;;
문제에 오류가 있을 수도 있지만 우선 아닙니다.
앗.... ㄷ.이 아니라 ㄱ, ㄷ이 참이네요. 4번. ㅋㅋ 왜 ㄱ을 빼먹었지? ㅠㅠ 이도 아님.... 모릅니다. 이런 형식의 문제는 풀고서도 항상 불안해요.ㅠㅠ
그것도 아닙니다... 의외로 엄청난 함정이 있는 문제에요^^;
아 ㄱ 하나만 맞는 거 아닌가요..ㅎ
ㄴ은 1 , -1/2 , 1/3 , -1/4 , 1/5 , ... 과 같은 수열 생각해보면 반례이고
ㄷ은
a_n은 1 , -1, 1/루트2 , -1/루트2 , 1/루트3 , -1/루트3 , ...
b_n = -a_n으로 잡으면 (즉 -1 , 1, -1/루트2 , 1/루트2 , -1/루트3 , 1/루트3 , ...) 반례가 되는 것 같습니다.
(ㄷ 조건에서 lim a_n b_n =0 은 필요없는 것 같아요~ 나머지 두 조건에서 자동으로 얻어지는..)
슈도우님도 문제 제조 전문가이신 거 같은.. 그리고 그 때 그 행렬 문제 n * n 으로 확장해서 해보니 재밌는 결과가 나오는 거 같아요. 한 번 글을 올려야 하는데 계속 못 올리고 있네요ㅎ
ㅋㅋ ㄷ.반례가 완벽하네요! 옛날 면접 준비할 때 저 반례를 듣고 기겁했던 기억이...
저는 그때 그 행렬문제에서 2차 한정으로 일반적인 경우에 대해 생각해 본 적이 있는데 너무 이상한 풀이가 되버려서 아직도 맞나틀리나 미심쩍은 채로 남겨두었는데, 나중에 syzy님께 한 번 검증받고 싶네요ㅎㅎ
제가 검증해드릴 수 있는 실력이 될지 의문이지만 가능하다면 당연히 해드려야죠ㅎㅎ
ㄴ은 교대급수판정법으로 살펴보면 반례가 맞지만 고등학교 수준에서 반례라는 것을 어떻게 알 수 있을까요?
우선 대우명제를 생각하고, 수열 {1/n} 이 극한은 수렴하나 급수는 발산하는 성질에서 힌트를 얻어 {1, -1, 1/2, -1/2, 1/3, -1/3 ...}이란 수열을 반례로 제시하면 됩니다.
fantas님께서 드신 예시가 고등학생들이 이해하기에 좀 더 쉬울 것 같네요. 부분합을 잘 이용하면 고등학생들이 풀 수 있을지도..
제가 위의 질문을 한 이유는 syzy님께서 제시하신 1-1/2+1/3+... 라는 급수가 수렴한다는 것을 고등학생이 실제로 보이기 어렵다고 생각했기 때문입니다. (극한값은 ln2라고 하네요.)
^^;;; 그렇군요. 배웠습니다. pseudofantas도 syzy님도 대단하세요. ^^
아닙니다..^^ 저야말로 틀릴 때도 많고, 또 먼지님 풀이 보면서 많이 감탄하는데요~ 좋은 문제 많이 투척해주셔서 고마워요!!
먼지바람님도 항상 멋진 풀이 감탄하고 있습니다!ㅎ
근데 ㄷ 보기에서 lim (a_n 곱하기 b_n) =0 이다는 굳이 쓸필요 없을거같아요
왜냐면 그 뒤에 무한급수 두개가 수렴한다는것만 으로도 lim a_n =0 lim b_n =0 두개가 자동으로 얻어져서요 ㅎ
좋은 지적 감사드립니다ㅎ
ㄱ은 어떻게 푸나요?
ㄱ은 입실론델타(대학과정)으로 하면 바로 풀수있는데 고딩수준에서는 명확하게 하긴힘들것같네요.
| An^2 - 1 | = | |An| - 1 | * | |An| + 1 | < e
| |An| - 1 | < e / ( | |An| + 1 | ) < e 이게 핵심인듯 e는 매우작은양수이고 n은 충분히 큰수
감사합니다. 고등학교 수준의 풀이를 생각해 보고 있는데 잘 안되네요 _-;;