수렴할듯 발산하는 무한급수 뭐뭐 있나요 ? ㅠ
게시글 주소: https://old.orbi.kr/0003254838
제가 아는건 1 + 1/2 + 1/3 + 1/4 + ... 밖에 ...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
쉬운게 없다 0
하
-
오늘 되는 것도 부정확한 거죠? 성적표 나올 때까지 기다리면 되려나요 언제 12/6 되나...
-
ㄹㅇ엄인데
-
여르비 인증을 보기 위해서입니다
-
놀아줄 친구가 없어서랑.. 애니프사들 구경하는거랑.. 미코토의 예쁨을 알리기 위해서...
-
대유잼 역시 세상은 통계로 설명된다
-
10일이나 안 하니까 진짜 이상하네
-
기상 6
너무일찍일어난듯
-
이번수능 2
이번 수능 15,20,21,22,28,29,30틀렸는데 시발점부터 다시해야되나요?
-
서울대 합격기원 5일차 너무나도 가고싶구나
-
허벌 우주망원경ㅋㅋ
-
ㄱㅁ 16
ㄱㅁ
-
라인 대충 0
교차지원까지 생각 있습니다 고려대 낮공 같은 데 상향으로 넣어볼 수는 있을까요?
-
혹시 강남역에 있는 강대 본관 유시험으로 들어가신 분 계신가요?? 들어가기...
-
서울 시발 사람만 존나많음 숨막힘 서울에만 있는것중에 나에게 없으면 안되는건 한개도...
-
테뉴어 있는 국립대 의대 정교수야 그냥 자기 맘대로 일해도 뭐라할사람 없지만 사립대...
-
빛난다면
-
인가경 라인 한번만 돌려주실분 있나요..? 곧 논술입니다 결정해야돼요..
-
면접서 개쪽당하니 자동으로 생각남
-
동사 45 / 세사 48
-
강기본부터 새기분까지 강민철 커리 탔는데 26강E분 하기 전까지 뭐 들을지 추천 부탁드립니다
-
개똥아 똥싸니 아니요
-
가천대 전기공 논술입니다
-
번역이 이상해 그냥 영어로 보는 게 마음이 너무 편함
-
. 8
벡터 분해 후 힘 합성 벡터 분해 후 평속 두 물체 동일 가속도 충돌 -> 하나...
-
이번 미적 28 29 30 다 틀렸는데 시발점부터 다시 할까요? 0
고민중 베이스가 약한건가 싶기도…
-
고1입학할 때 옆자리에 일찐녀랑 짝꿍이 됬는데 내가 만만했던지 날 의자취급하더라...
-
의대 망했다면서 다들 메쟈의 목표로 반수함.. 올해 경북의 그분도 결국 메쟈의...
-
Riesz representation theorem 3
Schur's theorem Gram-schmidt orthogonalization...
-
수학 난이도 어땠음?
-
현역때 35343으로 덕성여대 붙었는데 24221로 덕성여대를 가..? 수학이 많이...
-
신검받으러가요 9
귀찮네요
-
한심한 2
나!
-
지구 노베고 오지훈쌤 들으려면 메가패스 구매해야하는데 그냥 이훈식쌤 듣는게...
-
3수하면 슬픈점 6
내가 군대다녀오면 나랑 동갑인 사람중에 대학을 졸업하는 사람이 나온다는 거임..
-
한지 vs 사문 2
현재 사탐런을 준비하고 있는 예비고3입니다. 평소 구글어스로 다져진 세지 관련...
-
안정적으로 될까요 아니면 좀 빡센가요
-
물리 잘 6
할거 같이 생긴 나
-
장난전화 0
-
1년전이랑 똑같은글 썼는데 똑같은반응이 있음,,,,,,
-
대학원생 아저씨입니다. 재작년 쯤부터 입시철마다 물리학과/자연대/공대 진학 관련...
-
독서 배경지식 쌓을려고 교과서 읽는 건 어떻게 생각하세요? 2
중학교, 고등학교때 뭘 하고 왔는지 관련 지식이 떠오르지가 않네요... 젠장할...
-
. 2
근데 가끔 친하진 않지만 근황이 그리운 사람이 있는듯 ㅋㅋ 저도 그 중에 포함되는...
-
대가로 내 이미지가 곱창날거 같긴한데..
-
근데 진짜 이감 성적이랑 수능 성적이랑 거의 상관이 없나봄 1
상관이 있어봤자 고득점하면 한 수능날 3등급 이상은 맞는다 이 정도 근데 아무짝에...
-
크럭스나 피오르 1
당일날 미리 대기타고 파바박 해도 실패 할 확률이 있는거죠...? 하 너무 절실한데 ㅠㅠ
a_n=Ln(1 + 1/n) 은 어떨까요ㅎㅎ 허접하나마 뚝딱 만들어 봤는데ㅎ
발산하는 것이 맞습니다.
괜찬네여 ㅋㅋㅋ
1/log2+1/log3+1/log4+....
sum (1/n번째 소수)=1/2+1/3+1/5+1/7+....
sin1+sin1/2+sin1/3+sin1/4+...
(log1)/1+(log2)/2+(log3)/3+(log4)/4+...
다 대학가면 배우는건가요 ?
네~ 급수의 수렴판정법을 대학 때 배웁니다. 단 소수는 ...ㄷㄷㄷ
피보나치 수열의 역수의 급수가 수렴한다는 걸 증명할 수 있습니다.
소수의 역수의 무한급수는 쫌 신기하네요~~ㅎㅎ
sum_{n=1}^{infinity} 1/(n log n) 은 발산
sum_{n=1}^{infinity} 1/(n (log n)^1+e) 은 수렴. (e가 양수일 때)
(1/2)^2 +((1*3)/(2*4))^2 +((1*3*5)/(2*4*6))^2 + ... 은 발산 등등이 있어요.
(2/9) + ((2*5)/(9*12)) + ((2*5*8)/(9*12*15)) + ... 는 수렴일까요 발산일까요..ㅎㅎ
비교판정법에 의해 수렴할 것 같습니다.
일단 문제의 급수는 양항급수이고 분자에 있는 수에 다 1씩 더해주면(ex. 2->3, 2*5->3*6, ...) 일반항이 18/(3n+3)(3n+6)=6/(n+1)(n+2)이고 sum(6/(n+1)(n+2))가 수렴하므로 문제의 급수도 수렴할 것입니다.
제가 답글을 못 달았었는데 일반항이 써주신 게 맞나요?^^ 수렴이 맞긴 한데..
앗 계산 실수했네요;; 6/(n+1)(n+2)가 아니라 2/(n+1)(n+2)로 바꿔야 할 것 같아요
아 제가 아예 잘못 생각했군요ㅎㅎ 말씀하신 방법으로 해도 되는군요ㅋㅋ 감사합니다~