수2 goat 구함(질문)
게시글 주소: https://old.orbi.kr/00034371895
동생이 풀어달라는데 1도 모르겠...ㅜㅜㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
도서관 문 닫을때까지.
-
ㅈㄴ시비터는새끼있는데 저격만 하고 산화해도됨?
-
작년 중대 공대 붙은 생기부로 올해 한양대 공대도 ㄱㄴ할까 0
이번에 낙수효과에 최저 신설되서 수시 넣긴했는데
-
국제캠퍼스 뭔가 이상해보임 제국캠퍼스 ㅈㄴ 세보이는데
-
비상사태………
-
= 국립평양대학교
-
그래서 오늘 안할거임
-
숭실숭실~ 이름보면 귀여워보이는데 숭카이를 접하면 가슴이 뜨거워짐
-
하 심심,, 5
재밋는 댓글 달아주면 천덕씩 10명 마감
-
Seoul national education 어쩌구 박힌 과잠 입었을때...
-
이거 언제 다풀어 국어- 상상 절반, 문실정 5개, E뮨 시즌 3,4 수학-...
-
예상 난도 13번이라는데 미분가능하도록 하려면 함수가 연속이어야 하니까 연속성으로...
-
ㅅㅂ 오렌지 다맞고 고전소설에서 하나 나갔네 뭔......
-
이치한약수 3
이대 치대 한의대 약대 수의대
-
건동홍 버리고 왔는데 돈없어도 상경했어야했나
-
머리아프다오 0
오늘은 실모를 풀지 않겠디지니
-
나 작년에 국민대랑 과기대 낮공 붙었는데 (재수는 확정이였지만 부모님이 그냥 함...
-
인간의 범주서 탈락해버린 짐승
-
전적대라 훌리짓좀 해봄 ㅋㅋ 1등대학이자나
-
학원 뛰쳐나옴 0
스카가야지
-
예비 고2 이고 선택과목 2학년때 물화지 기하 생윤 3학년때 미적 언매 이고요...
-
서울내셔널유니브.랑 유니브.오브서울 헷갈린 적 있어서 말해봄ㅋㅋ
-
여대라 진짜 공격당할거같아서 못함..
-
탕 탕 후루후루~ 탕탕 후루루루루~
-
웅냥냥 1
인티제의 말을 꼬아서 듣지마 애초에 너한테 인간적인 호감이 업스면 말도 안하니까 너...
-
‘연세대 문제유출’ 논란 일파만파…소송·수사 이어 1인 시위 1
‘관리 부실의 책임을 학생에게 전가하지 말라.’ 4일 오전 서울 서대문구 연세대학교...
-
반수실패할거 같아서 훌리짓좀 해봄
-
에서 "교" 자만 더한 학교가 맞음 전적대라서 어그로좀 끌어봄
-
전적대라 훌리짓좀 해봄 ㅇㅇ
-
전적대라 훌리짓 좀 해봄ㅋㅋ
-
좋다는건가
-
박혀있던거 꺼내서 풀었는데 와 계산 ㅈ되던데 ㅋㅋㅋ 15 22 28 30 남기고...
-
강민철쌤 커리큘럼 탈 예정인데 독서는 마닳로 그냥 혼자서 독학하고 싶고 문학은...
-
탈급간 아님? 취업률도 그렇고 ㅇㅇ
-
오늘의 모닝 실모 결과 11
한수 파이널 7차: 87 이해원 파이널 1회:96 국어... 90점대가 실종됐다
-
오늘 밤샐거임 6
ㄹㅇ임
-
국숭세단: 일반인도 이름은 다 들어봄 광명상가: 수험생한테는 익숙함 한서삼: 무슨...
-
40분안에 풀기 가능인가요???
-
그뒤로 나락갔는데 수능때 커하 ㄱㄴ?
-
그냥 여친분 부러워ㅓㅓㅓㅓㅓㅓㅓㅓㅓㅓ
-
거의 다 여자임 남자는 카리나 윈터가 있는데 굳이 닝닝이 이쁘다 하지 않음
-
냥냥 10
찐친랑 저나하는데 별 이상한 인간들이 너무 많네 사람 진짜 오래봐야대 요즘 더 그런거가타
-
디자인에서는 연고대급인데 일반계열은 그게 아닌게 현실이라 국민대 가고싶다하면...
-
겨울 때 못들은 단과영상, 파이널단과 영상 찍어둔거 안들었는데 이거 아깝다고 들을...
-
대 방 어 4
대 대 대
-
22 30맞 20 9 틀....
-
ㄴ선지 ㄷ선지가 궁금한데요 ㄴ선지는 그림 A-B가 용융점(?)을 넘기기 못해서...
평가원 기출만 보다가 내신 보니까 정신이 혼ㅁ해지네
자 x=1을 대입해 보죠. 그러면 그래프로 그리면 그건 f(-1)*1과 같다는걸 알수 있습니다. 따라서 f(-1)=1이고, 대칭적이므로 f(1)=-1입니다. 나머진 계산하면 되겠쬬~
강기원T 같아요
ㅋㅋ후...
뒤에 빼는 걸 (-x^2)부터 0까지 적분값을 더하는 걸로 바꾸고 x=1 대입해서 -1부터 0 적분값 1/2인 거 캐치하고 미분해서 f(-x)+2xf(-x^2)=-(f(x)+2xf(x^2))=3x^2에서, f(x)+2xf(x^2)=-3x^2(단, x>0)
기하적으로 대칭성 이용해서 사각형 만들어도 됨
도형에 의지 안 하고 푸는 걸 연습 중이라서요. 질문 들어오는데 사진 찍어서 못 풀어주니까 수식으로만 푸는 것도 연습해야해서 ㅋㅋㅋ
환경이 풀이를 만들어내는군요. 원래 직관적으로 그래프 머릿속에 그려내고 최소한으로 식 써서 푸는 맛으로 수학했는데
'뒤에 빼는 걸 (-x^2)부터 0까지 적분값을 더하는 걸로 바꾸고' 이부분이 이해가 안되는데 알려주실 수 있나요 ㅠㅠ
f(x)=-f(-x)이니까 0부터 x까지 적분이면 이건 -x부터 0까지 적분한 거의 음수와 값이 같겠죠?
엥 이 함수 기함수에요??
y=x에 대해 대칭이면서 원점을 지나니 그러겠죠?
f(x)가 x<0에서 -1/2x 이고 x>0에서 -2x 같은 그림이라 치면 기함수 아니지 않아요??
아마 저 문제에서 미분가능이라는 조건을 넣어야 하는데 명시하지 않았을 수도....인데 실제로는 저 아래 식을 항상 만족하지는 않아서 안된다....로 이해해야 할 듯한
오잉 활꼴도 있고 미분가능이 문제가 아닌거 같은데요..
아래 식이 항등식이 되게 하는 함수가 되어야 하는데 해당 함수는 방정식이 돼요
아뇨 물론 f(x)에 대한 예시구요, 제가 풀었을때는 f(x)=x^2 (x<0), -루트(x) (x>0)가 나오는데.. 딱히 기함수는 아닌거 같구요
아, 맞네요. 걍 x=x^2될 때가 x=1 하나이니 대입해서 푸는 ㅋㅋㅋ
다들 감사합니다 복받으세용ㅎㅎ 비록님 풀이 알려주실수 있나요??
깔끔하게 정리하느라 시간이 좀 걸렸네요 잠시만여
정상적 수2 내에서는 이렇게만 푸시면 됩니다. 함수 구하는게 막 어렵진 않은데 좀 오바쳐서 문제 푸는 데 필요한 내용만 넣어봤습니다.