수학문제질문이요~~(왜 저처럼 풀면 안되나요??)
게시글 주소: https://old.orbi.kr/0003518493
(쎈 적분과 통계 773번이에요~)
3행 4열로된 행렬의 각 성분마다 12개의 전구가 있고 오른쪽에는 전광판으로 이루어진 신호기가 있다. m열의 전구가 n개 켜져있을때 mn+1로 계산된 네 개의 수의 곱이 전광판에 나타난다. 예를 들어, 1열에서 1개, 3열에서 2개의 전구가 켜진경우 전광판에 나타나는 수는 (1x1+1)(2x0+1)(3x2+1)(4x0+1)=14 이다. 12개의 전구 중 임의로 2개를 켤 때, 전광판에 짝수가 나타날 확률을 q/p 라 하자. 이때 p+q의 값을 구하여라. (단, p,q는 서로소인 자연수이다.)
여기서요.. 해설지에는 전구가 켜진 위치를 고려해서 12C2(조합)=66 이 전체 경우의 수이고 전광판에 홀수가 나타날 확률을 구해서 여사건의 확률로 전광판에 짝수가 나타날 확률을 구해요,, 그런데 저는 전구의 위치를 고려하지 않고 풀었어요.1열에 켜질 전구의개수 a개, 2열에 켜질 전구의개수를 b개. .. 4열에켜질 전구의개수를 d개라고 해서 (a+1)(2b+1)(3c+1)(4d+1)=짝수 를 만족하는 (a.b.c.d) 의 순서쌍의 개수를 구해봤더니 (a.b.c.d) 순서쌍 의 전체 개수는 10, 짝수를 만족하는 순서쌍의 개수는 5개가 나와요. 전구가 켜질 위치를 고려하지 않아도 그 비율은 똑같을 테니 5/10=1/2 으로 계산해도 되지 않을까요? 그래서 저는 답이 3 으로 나왔는데 해설지에는 15/22 로 계산해서 답이 37로 나와요 ㅜㅜ..
왜 저처럼 풀면 안되나요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
외러워서 울었어 8
엉엉
-
최저 맞출 수 있게 해주셔서 감사합니다 제 마지막 소원은 논술 붙게해주세요 경희대...
-
성대 가산점 0
2개다 사탐인데 많이 클까요? 자연과학(158명 모집) 넣으려고 하는데 지금...
-
ㅠㅠ
-
진학사가 현실이 아니라고 믿고 싶은데..ㅠㅠ
-
6번 얘기 때문에 너무 불안하네요ㅠㅠ 미달학과가 아닌 일반 교과 수시전형에서 예비...
-
잠이 안 온다
-
목요일에 듣는 과목들 다 종강해서 프리하다.. 행복해
-
과탐 상위권까지 사문 들어오면 내년에 개판될 것 같은데 저만 그렇게 생각하나요?...
-
26수능엔 내가 가야해
-
대학교축제 질문 0
대학교 학교축제나가려면 오디션봐야함?
-
여름엔 바빠서 못먹고 안바빠지면 추워서 못먹어요
-
환율은 또 너무 높고.
-
잠은 뒤져서 자야하나 ㅋㅋ
-
자러가볼게요 8
오늘 수고 많으셨고 다들 좋은 밤 되세여
-
어카지
-
웃겨서 보낸 줄 알았는데 진심으로 꼴렸다함.. 댓글들도 막 어어 왜서노 ㅇㅈㄹ하는데...
-
23년 12월 11일 ibm 초전도체 양자컴퓨터 시연하고 그 뒤로 쭉 폭락이었는데...
-
한 문제 남았다 2
이것만 풀고 두시간만 자야지
-
이쁠수록 은근 성적인 욕구있더라
-
달다 달아
-
그냥 경희대라고ㅋㅋㅋㅋ 뭔 2000년대도 아니고 이원화 인식이 얼마나 안잡혀있으면...
-
삶을 책임지지는 않습니다 사실 그 대학 내에서 상대적으로 못나면 다시 열등감 들어서 도돌이표입니다
-
오노추 4
러시아라고 넘기지 말고 한번만 들어봐요
-
옯붕아
-
그런느낌의 노래를 젛아해요
-
내 꿈 꿔
-
인스타 계엄령 4
이참에 크리스마스 지나고 들가야겠다.... 친구들의 기만으로 점철된 스토리를 도저히...
-
1. 실력은 충분한데 본인이 스스로를 깎아먹는 스타일 이런 케이스는 입시 좀...
-
굿나잇 8
굿밤
-
간판도 따고싶고 과도 원하는데로 가고싶음 답은 [4수]다
-
계획 실패 0
졸리므로 실패 허수니까 다시짬 학교-강의 마저+복습×2, 시험범위 전체...
-
내가제일좋아하는 연예인이랑 결혼하기
-
수리 논술 0
인문수리 논술 봤습니다. 모든 문제 다 풀었고 정답도 다 맞는 것 같은데 실수...
-
다시봐도 지렸다
-
입시를 보다보면 4
열심히 노력하시는 대단한 분들 보면서 난 왜 열심히 하지 못했을까 난 왜 현실에...
-
굳이누구에게물어보지않아도알기때문이다
-
진짜 굿나잇 7
이번엔 이상한 꿈좀 안꾸면 좋갯다
-
탈릅하고 싶다 7
근데 할 용기가 없다
-
삼반수 하긴 할거 같은데 짜피 여깃는 사람들 전부 합격해서 박탈감 지릴거같음
-
배고파요 4
-
뭔가모순적인말같긴한데
-
그게 나야 바 둠바 두비두밥~ ^^
-
어캐했누
-
아오 3
크아악
-
정신과중딩부터가고 고1때 정병때매자퇴갈기고 지금까지 대학도 못가고...
-
내가 생각하는 가치관 내에서 답해드림뇨
A 개 B개 C 개 D개 음...그러니까 A+B+C+D=2면 되니까 (2,0,0,0),(0,2,0,0),(0,0,2,0),(0,0,0,2),(1,1,0,0),(1,0,1,0),(1,0,0,1),
(a1 a2 a3 a4) (0,1,0,1),(0,1,1,0),(0,0,1,1)이므로 총 경우의 수가 10개, 그 중에서 전광판에 짝수가 나오는
(b1 b2 b3 b4) 순서쌍은 (1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,0,1,1) 이니까 1/2라는 말씀이시죠? 근데 이렇게
(c1 c2 c3 c4) 세는 것은 그저 켜진 전구의 개수를 적은거에 불과해요. 그니까 예를 들어 (2,0,0,0)이라
는 순서쌍에서 2는 원래 (a1,b1),(a1,c1),(b1,c1)이라는 순서쌍을 포함하고 있는데 그걸 하
나로 뭉뚱그려서 세셔서 66개가 아니라 10개가 나온거 같습니다.
허접한 설명이지만 도움이 되셨길...