올해 9평 수리 나형 21번 죽어도 이해안가는 저는 호구인가요?
게시글 주소: https://old.orbi.kr/0003898929
다른 인강강사들 강의나 인터넷에 올라와 있는 해설을 봐도 도저히 이해안가네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
중대 경영은 1
공부 어느정도 한 거에요? 명문대로 볼만 한가요? 상위 몇프로?
-
미적을왜안보냐거 0
어이없을무
-
얼버기 2
이따 또 잘거임
-
분명히 선거관리 하라고 만든 기관인데 선거때만되면 정규직은 휴직하고 계약직이 일하는...
-
어느 쪽으로든 힘조절 잘 안 돼서 나오지 않을까
-
빛에 관성있고 열역학 틀린것도 모르는 전세계의 과학자들 수준을 보면 뭐 이상한건 아니네..
-
자세한 사항은...
-
머리아프네 7
으으
-
거북아거북아 결과를 내어라 내놓지 않으면 구워서 먹으리
-
스카 자리 추천 21
1번이 좋을까요 2번이 좋을까요
-
진짜야
-
그치만 아무도 나에게 과외를 받고 싶어하지 않는 걸
-
얼버기 4
기상완료
-
무뽑으로 코하네 월링 ㅅㅅ
-
눈 부음 + 샤워 못해서 꾀죄죄해서 집에만잇엇는데 가서 실모나 풀까요
-
여기서 흡연하지 말라면서 흡연할 수 있는 곳을 안알려줘…. 흡연부스라도 주세요….
-
171130 (나) 12
심심해서 얘도 빠르게 풀어봄...
-
좋아하는아티스트라이브직관이있었는데 티케팅 실패했어서 안죽었음
-
수분감 자이 2
예비 고3이고, 내신 챙기면서 정시도 챙길건데 수분감 자이 중에 뭐가 나은가요?...
-
이게 맞냐…. 5
오르비 하다가 3시간 자는게
-
난 좋아 8
-
특히 선정리 이게 그냥 미쳣음 미친 동선이다 진짜
-
그 특유의 감성이 너무 좋아용..!!
-
친구꺼 빌림 엄마한테 담배피는거 걸리면 안되서 증거를 남기면안되거든
-
[호드] : 관리자 님은, 스스로를 마주하는데 성공하셨나요? [호드] : 이 곳에서...
-
진짜모름 이거 어케함요
-
효과는 미미했다
-
새르비하는 사람들이 많아서인지 새르비가 재밌구만
-
사실 헛된 희망이 아니라 그냥 희망이었으면 좋겠는데 뭔가 그런 낭만과 이상을...
-
궁금
-
전에 기립성 저혈압땜에 갑자기 정신줄 놓아서 쓰러진적 많았는대 의외로 나쁘지는 않았음
-
비문학 선지 읽으면서 이해를 하고 전반적인 지문 이해가 된 상태에서 선지를 보고...
-
죽으면그만이야
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
2013년 기억이 어떻게 사진보니까 떠오르지
-
무물보 5
으앙
-
별로 안춥네 0
딱좋노
-
ㄱㄱ
-
이제 자러감...
-
당신은 행복하다 행복해질 것이다
-
어느 한 쪽으로 쏠려있으면 그 세계에서 못빠져나오는듯
-
잘있어 10
그립진않을거야
-
떠나십쇼 0
퍼덕퍼덕
-
주책이야 진짜
-
오늘부터 난 20살
-
저부터 함 전화기 (그 다음 댓글에 이어서 ㄱ)
-
잘자라 1
-
안녕하세요 4
-
정치 성향 ㅇㅈ 0
국사 배우면서 난 극우라고 생각했는데 거의 반반이네 보수에 전통이나 종교가 들어가서 그런가
저는 해설강의는 안보고
해설은 봤었는데 처음엔 뭔말인지 그 최솟값구하는 과정이 갑자기 탁막혔었어요 ㅠㅠ 나중에 다보니까 세세한 기초였다는거 ㅠㅠ
저도 이 문제만 시간날때마다 계속 풀고 해도 뭔지 모르겠더군요 제가 최대,최소에선 잘 안틀렸거든요 자연계 문제도 최대,최소는 잘 맞췄는데 이번 9평에서 이렇게나 어렵게 낼 수도 있구나 싶었죠
비타에듀 정현경샘 해설 봐보셨어요? 저도 이 문제만 해설강의 많이 찾아봤는데 정현경샘 풀이가 가장 명료한 것 같았어요.
한번 들어보니 다른강사들하고 조금 접근법이 다른 듯 하긴 하네요 정보 감사합니다
문제에서 주어진 조건을 만족시키기 위해서는
f(x)의도함수 가 -1에서 접하면서 한 실근k을 동시에 가져야됩니다.
따라서 f(x)의 도함수를 (x+1)(x+1)(x-k)를 둡니다
주어진 조건에 따라 k의 범위는 -1보다는 크고 2보다는 작거나같습니다.
문제에서 주어진 f의도함수 = (x+1)(x^2+ax+b)는 (x+1)(x+1)(x-k)로 표현할 수 있습니다.
양쪽 식을 전개하여 계수들을 비교해보면 a=1-k , b=-k 가 됩니다.
a^2+b^2 의 최대최소를 찾아야 되므로
(1-k)^2 + (-k)^2 의 최대최소를 찾습니다.
전개를 시켜보면 2k^2 - 2k + 1 이라는 2차함수가 나옵니다.
여기서 k의 범위가 -1보다크면서 2보다같거나 작으므로
k가 1/2일때 최솟값을 가지고 2일때 최댓값을 가집니다.
따라서 최솟값은 1/2 이고 최댓값은 5 이므로 최댓값과 최솟값은 합은 11/2 입니다.
아 이제 조금 알겠네요 답변 감사합니다
굳이 식 나열하지 않고 그래프를 그려보면 쉽게 풀려요. (-∞,0)의 구간에서는 도함수의 값이 무조건 음의 값을 가지면 되고, (2,∞)의 구간에서는 도함수 값이 무조건 양의 값을 가지게만 하면 되거든요.
이렇게 되기 위해서는 도함수 (x+1)(x+1)(x-c) 에서 c의 값,즉, c라는 실근이 0≤c≤2를 만족하기만 하면 되는겁니다. 한 번 그래프를 그려보세요. 0 보다 크고 2 보다 작은 구간에서 도함수 값이 양수로 바뀌는 함수를 무수히 많이 그릴 수 있을 겁니다.
이런 후에, (x+1)(x+1)(x-c) = (x+1)(x^2+ax+b) --> (x+1)(x-c) = x^2+ax+b 로 만드실 수 있구요, 좌변을 전개한 후 도출한 a,b의 값을 통해 a^2+b^2을 이차함수의 꼴로 바꾸고, 이 이차함수를 완전제곱식 형태로 바꾸세요. 그리고 0≤c≤2의 구간에서 최대, 최소를 구하면 됩니다.
이제 조금 상황파악이 됩니다 답변 감사합니다