칼럼) 합성함수 그려버리기 with 기출 킬러 문항
게시글 주소: https://old.orbi.kr/00054855655
합성함수 그려버리기 with 기출 킬러 문항.pdf
합성함수 그리는 법과 합성함수에 대한 전반적 이해를 제공하는 칼럼입니다.
그리는 법까지는 나형도 충분히 이해할 수 있게 해놨네요.
다만, 킬러 문항은 가형이긴 하지만, 그래프 모양만 특이할 뿐
전혀 가형의 계산을 하지 않기 때문에 읽는 데에 지장은 없으실 겁니다..!
댓글에 원하는 나형 킬러 문제가 있다면 제보 바라요..!
나형 합성함수 문제는 잘 기억이 안 나더라고요...
우리 이제 앞으로 합성함수쯤은 눈으로 그려서 풉시다 ㅎㅎ
추가로 해설 잘 보시면 그리는 법과 더불어 합성함수 킬러를 푸는 태도가 들어있으니
참고하시길 바랍니다 :)
원하는 합성함수 문제 제보 바랍니다 ~
그리고 pdf 파일은 해상도가 내려가서 오르비 게시물로나
게시물에 덧붙인 이미지 파일로 이용해주세요..!
0 XDK (+10,000)
-
10,000
-
S대 갈끄니까.
-
그럴일은 없겠지
-
쿠펀치? 그 앱에는 “확정”이라고 뜨는데 아직 카톡이나 문자가 안와서요.....
-
겠냐.
-
궁금하면오해원 캬캬캬컄
-
자기는 만년4따린데 핑계대면서 실전개념탓을 하고 현실을 부정함 인정하면 ㄱㅊ
-
동성애 내용이 있는건 알았지만 초반부터 남자끼리 키스하길래 음. 난 이성애잔데...
-
도르마무임
-
플로버 손 17
-
시간 겁나 안감...
-
22수특 문학 작품 중계달리다가 너무 도배했는지 윤통시 회원들한테 미운털박혀서...
-
더지니어스 같은 서바이벌 프로그램 마니아신 분 있나요? 0
뭐가 제일 재밌었음? 제가 본 건 더지니어스 1,2,3,4 소사이어티게임 2...
-
난 저걸 왜 하는지 이해가 안 감 교과전형 안락사당하는 거 아닌가?
-
현실은 수능에서 누백 상위10퍼안에들어야 간신히 감 인정하면 ㄱㅊ
-
ㅠ
-
대학추천 0
그나마 수학이랑 탐구가 괜찮은데 저한테 유리한 대학추천좀..
-
"조금" 어렵게 출제된게 아닌거 같은데...
-
이상한사람 0
1. 문과쪽 머리(내신 국영이 수학보다 평균 한등급 높음, 모고도 백분위 항상...
-
2만 덕코나 기부를 받았는데 복권에 다 쓰고 결국 빈털털이가 됐다 내자신이 민망하고 한심스럽다
-
ㄹㅇ 성적표 나오고 신청 들어가던데 뽑혔으면 좋겠다....답변 잘해줄수있는데....
-
팔로잉수 정리 완료 10
정상화 on 근데 400명 밑으론 못내리겠다 맞팔+기억에 오래 남는 오르비언+칼럼러라...
-
기하물2지2 이거 전국에 몇명이나 있으려나요
-
와 뭔가 호구되는느낌이네 머리띵하다 참
-
엄청 높나요..? 서강이나 한양은 2-3점 정도 차이나는데 성대가 특히 텔그랑...
-
일 강도 실화냐 4
4시부터 논스톱으로 일했네 돈벌자..
-
종종 므흣한 짤도 올라오고 그랬던...
-
하아... ㅠㅠ
-
저 사실 8
외대부고 다녔어요
-
왜이럼뇨..탈릅하라는거임뇨?
-
설뱃다신 분이랑 던킨더넛은 맞고소 해도 특정성때매 의미없지않나요? 그것도그런데...
-
까르보불닭에 한우등심구이 섞어서 먹기 와장창창
-
왤케당당함 애들 님들 학교도 이럼?
-
맞팔 5
구함
-
울산 사는데 걸어서 에리카까지 가는 거임뇨 ㅋㅋㅋ
-
24수능 확통 96(22틀) 25수능 미적 88(20,28,30틀)인데 경한 목표면...
-
수능이 다가오니까 정신나가서 바니걸 입고 찍은거 인증한 사람도 있었음
-
말도안되는 짓이겠죠 나이로치면 오수생이고 26때 안뽑을 가능성도 있는데 그냥...
-
던킨도넛이나 서강대한의대 둘다 맞고소임? ㅋㅋㅋㅋㅋ
-
얼버기 5
아직 11시밖에 안됐네 점심 뭐먹지
-
ㅈ반 가서 내신 따도 교과로 가는거 힘들어지는거 아닌가여??...
-
연말 분위기 5
운동선수라 양심상 맥주만 먹기
-
하긴 이 나이에 그걸 바라면 그게 더 양심뒤진거겠지 씁쓸하다
-
모집인원 12분의1로줄이고 매번시행 ㅇㅇ 성적통보는 한달뒤, 합격자발표는 두달뒤 ㅇㅇ
-
뭘배운건지 잘 모르겠음..
-
문과현역이고 수능성적이 평소보다 안나왔지만 재수는 진짜 하기싫어서 한번에 가고싶은데...
-
이름으로 안했는데 뱃지 못땀?
-
눈이 또오네 1
으추추
-
낼(?) 봐요
-
화작 미적 쌍지 87 84 2 43 43 인데 경시 낮문 가능하나요?
역시나 스크랩
유익추
21학년도 가형 30번 sin 파이x 요!
그것 '따위'는 이거 읽으시면 그냥 눈으로 풀 수 있습니다 ㅎㅎ 추후에 손글씨 올릴게요! 제보해주셔서 감사합니다 따로 모아놓은 파일이 없어서 일일이 찾기가 힘들었네요 ㅜㅜ
이거보고 수학 1등급 쟁취해본다
'만점'되도록 계속 수학 비법 풀겠습니다 크크
슈냥 님 능지가 부족하다면 누가 만점을....
pdf 해상도 괜찮아보여요
확대하면 조금 떨어져서요 ㅜㅜ 보기 괜찮다면 다행이네요
아...그림 해상도가 좀 떨어지네요
좋은 칼럼 항상 감사합니다
한글에서 pdf로 저장하면 그러더라고요.. 누가 안 떨어지는 법 좀 알려주시면 너무 감사드리겠습니다 엉엉
한글에서 글만 쓰고 pdf변환 후 따로 굿노트에서 그래프 그리고 내보내면 안 깨질거에요
23드릴 님은 원래 그릴 줄 아셨을테니 킬러 문항 해설에 숨어진 '조건 해석법'을 보시면 될 거에요..! (나) 조건 해석 후 (가) 그리고 (다)를 해야 하는 이유를 찾아주세요 ><
혹시 속도 그래프로 합성함수 설명한 부분도 이해가 됐나요??
고마워요 ㅎㅎ
담 닉은 눈풀합성??
캬
"Always"
나형 분들은 없나요 ㅠㅠ
ㅎㅎ 손글씨 올릴게여~
N축의 문과화 느낌이네요 ㅋㅋ
위치 그래프를 온전히 이해하고 합성함수에 적용한다면, 속함수는 증감이 중요한거죠 ㅎㅎ 기울기는 ‘속도’를 말하니 ‘너비’를 말하는 건데, 그건 그림 바보같이 그려도 x좌표만 잘 적어주면 되니까요..!
만덕만덕
ㄹㅇ루요..!
오늘 공부 끝나고와서 자려고했는데 못참고 읽었습니다...
어렵진 않았나요..? 쉽게 써보려고 했는데 제 필력이 부족함을 느꼈네요 ㅜㅜ
죄송하지만 왜 둥글게 이어지는지 잘 이해가안됩니다 제가 독해력이좀 딸려서..
Case 2에 의해 속함수를 미분한게 0이 되기 때문인겁니다. h(x)=f(g(x)) 라 할때, g’(x)=0 인 곳이 우리가 구간을 나누는 경계죠. 그 경계에서 g’(c)=0 이라는 말은 h’(x)=f’(g(x))곱하기g’(x) 이므로 h’(x)=0이 성립하므로 합성함수 h가 둥글게 연결됩니다..!
아 이제 이해됬어요 감사함니다
저기 오타로 c있는 것만 x로 고쳐 읽어주세요..! 이해되셨다면 다행이네요 ㅎㅎ
저한테는 이게 폰헙이고 엑스비디오입니다
내일 수1 끝내고 빨리 수2 들어가고 싶어요
이번 수1 수특은 좀 버겁네요 ㅎㅎ;
올해 거 안 풀어봐서 모르는데 올해 어렵나 보군요 ㅜㅜ 힘내세요
오랜만에 봐서 더 그런 거 같아요 ㅋㅋㅋ 어렵다기 보단 아이디어 생각하는 거 다시 연습해야겠다..? 라고 생각하는 게 더 맞는 거 같네요 ㅎㅎㅎㅎ
워터마크도 생겼네요 ㄷㄷ
당신이 최고야
질문 드릴게 있는데 쪽지 드려도 될까용??
남겨주세요!
풀땐 안그려도 이해도가 깊어진다는게 ㄹㅇ 맞는말같네요
합성함수가 뭔지 알려면 무지성 식 계산보다 정의역 완벽히 이해해서 그리는 게 최고죠 ㅎㅎ 생가보다 조회수 안 나와서 속상해하는 중인데 얼른 많이들 봐주시길!! 공들인 칼럼이라서 미련 남네요 ㅋㅋ
2019학년도 수능 가형 30번도 이걸로 크흠..ㅎㅋㅎㅋ
확인 확인..!
그 미적분 삼도극 책 출간은 언제 될까요??
3월 중 목표이고 지금 내지 디자인 중입니다..! 원고 작성은 끝난 지 좀 됐어요
분명 수능전에는 쉽게 그렸던거 같은데 이제 기억 하나도 안나 응애...
저도 쓰다가 으음? 싶었어요 ㅋㅋ
뭔지 모르겠는데 문제들 개어려워보여요
이해 바로 되네요 ㄸ 감사합니다!
잘 쓰시길 바라요..! :)
약간 n축 맛 인것 같기도 하고 좋네요 ㅠㅠ
우와!! 다행이에요 ㅎㅎ 쉽게 쓰려하는데 역시 힘드네요 고생하셨습니다 :)
수학은 목소리가 너무 필요한 거 같아요!!! 글로만 하려니 머리 터질 뻔요. 좋게 봐주셔서 감사합니다 ㅎㅎ
칼럼 보구 같은부분 인강 다시듣고 기출문제 좀 풀고 다시 한번 보면 먼가 깨달음 오는게 많은거같습니당... 항상 잘보구있어용 감사합니닷~~ 나중에 '수열'파트 칼럼 쓰실 생각 있으신가용?!
그렇게 써달라고 해주시는 파트들 쓰고 있어요..! 참고하겠습니다 :)
질문이여!! 0플러스라길래 정의역을 어떻게 설정하는거지? 싶엇는데 무한대로 쭉 가네요… 이유가 뭔가요?
속함수가 x가 무한대로 갈 때 함숫값이 0 우극한이니까 0+라고 표시하신거 같네요
잘 읽었어요 답례로 뽀뽀 쪽
묵혀놓다가 오늘 정독했는데 ㄷㄷ.... 체계화해주셔서 감사합니다 체화완.ㅎㅎㅎㅎㅎ
이런 그래프는 칼럼 방법으로 어떻게 그려야하나요?
f의 치역을 따면 무한->0-> 무한이므로 그 치역에 맞춰서 3x+cosx를 그려주시면 되는 것이죠...! 그림 형태는 쉽게 나와요