(초보칼럼) 07들을 위한 복소평면
게시글 주소: https://old.orbi.kr/00057707703
안녕하세요
이번 6월 모의고사에서 50분만에 수학 100을 받고
내신에서도 수학 1등급을 받은 일반고 학생입니다.
여기에는 수학에 정통하신 분들이 많아서
몇가지 생각지 못한 오류가 있을 수 있으나
제 후배들을 위해 최대한 정확한 내용을 기술하였습니다.
복소수를 지금 쯤 배우시는 07 08 들이 많을 거라고 생각되는데요
복소수...제곱 하면 -1이되는 수가 생소하면서도
그것을 계산하고,,, 이차방정식에도 넣고...
여러가지를 하면서 힘든 파트 중에 하나 일 것 같습니다.
그 중에서 단연 어려운 것을 고르라고 하면
복소수의 규칙 찾기인데요
i를 4제곱 하는 것 부터 시작해서
w(오메가) 를 3제곱 하는 것 까지...
그것을 함수에도 넣고,,, 다 더하기도 하고...
머리가 터질 것입니다.
수능에서 별로 중요하지 않은 부분이라고
하지 않기도 뭐하죠.
그런데 이것을 효과적으로
아주 빠르게 쉽게 풀 수 있는 방법이 하나 있습니다
복소평면이라고 하는, 지금은 사라진 교육과정에 그 해답이 있는데요
흔히 데카르트 좌표계라고 말하는
우리가 흔히 쓰는 x축 y축에 실수를 대입하여서
얻은 평면이 아닌
y축에 허수부(lm) 을 넣어서
한 좌표평면 위의 점에 한 복소수를 지정하는 좌표평면입니다.
여담으로 저희 옆에 있는 고등학교는 서술형에 써도 된다고도 하셨다네요.
본격적으로 복소평면에 대한 '기본적'설명만 해보겠습니다.
실제로 복소평면을 배우는 것이 아니라
고1 문제에 어떻게 '적용' 할 것인지가 주가 되기 때문에
너무 깊게 들어가지 않으려 합니다,.
1. 복소평면이란 무엇인가?
우리는 x2=-1 를 만족하는 x의 값 중 부호가 양수인 것을 'i'라고 부릅니다(또는 j)
이것은 '실제로 존재하지 않는 수'이기 때문에 허수단위라고 부릅니다.
우리가 '실제로 존재하는 수'는 실수라고 하고, 이에 허수를 합친 것을 복소수라고 하죠.
이때 1+2i를 수직선 위에 올려 놓으라고 누군가 한다면,
어떻게 해야할까요?
1은 수직선 위에 올릴 수 있는데, 1+2i라니,
여러분들은 말도 안될 것이라고 생각할 겁니다.
하지만 '평면'이라면?
수직선 위에 평소대로 1을 놓고,
y축 위에 2를 놓아
둘의 순서쌍(1,2)을 1+2i로 정의한다면?
네. 그것이 복소평면입니다.
복소수가 하나의 순서쌍으로 나타내어지죠.
이때 x축은 실수를 놓을 것입니다. 1+2i에서의 1이죠.
이를 Real number에서 R을 따와 R이라고 합니다.(Re라고 하셔도 됩니다.)
그리고 y축에는 허수'부'를 놓을 것입니다. 1+2i의 2죠.
이를 Imaginary number에서 Im을 따와 Im이라고 합니다.
<figure 2>
2. 복소수의 연산을 어떻게 할 것인가?
복소수끼리는 연산이 가능합니다.
덧셈, 뺄셈, 곱셈, 나눗셈 모두 가능하죠(엄밀히 따지면 더 복잡하지만, 일반적으로 나눗셈은 가능합니다)
하지만 복소평면에서의 덧셈은?
네. '벡터합'으로 나타내어집니다만 (평행사변형을 만들거나, 실수부와 허수부끼리 더하시면 됩니다.)
하지만 우리가 원하는 것은 덧셈이 아니죠.
문제를 풀 때 곱셈을 자주하게 됩니다.
곱셈은
'돌려돌려 돌림판' 메타입니다.
이말인 즉슨, 고2 때 배우는 '동경'개념에서
그 각의 크기를 편각이라 하는데,
쉽게 말하자면
복소평면 위의 한 복소수가 있다면
Re축과 원점, 그리고 그 복소수와 원점을 이은 선의
각도를 얘기합니다. (항상 "시계 반대 방향"으로 재시기 바랍니다)
3. 어떻게 적용할 것인가?
이것을 적용할 곳은 무궁무진합니다.
벌써 몇몇 분들은 이미 루트를 이용해서 크기를 구하고
편각도 더한다고? 하면서
피곤하실 수도 있겠습니다.
하지만 우리가 고1 규칙 문제에서 보는 복소수들은
크기가 '1'입니다.
정말 놀랍게도 거의 1이 나옵니다.
왜냐? 곱했을 때 계속 1이 나와서
계속 곱하게 하기 위함입니다.
그러면 우리가 신경쓸 것은 무엇이다?
'편각'만 계속 더해주시면 됩니다.
결국 크기가 1이기 때문에 단위원(반지름의 크기가 1인 원)위를
복소수가 움직이는 것 처럼 보입니다.
i가 하나의 가장 대표적인 예시입니다.
루트(0+1)=1이라서 i또한 크기가 1입니다
교과서에서 i의 규칙성을 이야기 할 때
이렇게 돌아가게 표현한 것이
이 복소평면 개념에 기저합니다.
<figure>
보시다시피, i가 곱해짐에 따라 편각 90도가 더해지면서, 계속 순환하는 형태가 나옵니다.
i뿐만 아니라 여러 규칙을 갖는 복소수들이 많습니다,
#1. x2+x+1=0
두근의 편각은 각각 120도, 240도 입니다. 이것을 세번 곱하면
120x3=360(도) 이므로 다시 원래 시작한 곳으로 돌아가죠.
즉 이들의 '주기'는 3번 곱하기 입니다.
#2 x2-x+1=0
두 근의 편각은 각각 60도, -60도 입니다.
즉 이것들의 주기는 60*6=360에서 6이라는 뜻이죠.
#1과 #2는 헷갈리기 때문에, 꼭 구분해서 계산하시면 좋겠습니다.
#3.
이것은 편각이 45도입니다. 주기가 8입니다.
#4.
이 복소수를 시험장에서 만나신다면 계타셨습니다. ㅋㅋ
복소수만으로 풀면 훨씬 오래걸리는 수입니다.(물론 다 곱하지 않는 방법도 있습니다)
하지만 복소평면의 개념을 적용하면? 거의 시간이 1/4로 줄 것입니다.
이것은 편각이 30도입니다. 주기가 자그마치 12나 되죠.
<참고>
참고로, #1~#4의 복소수들을
주기에 해당하는 것들로 모두 더하면
모두 '0'이 나옵니다.
예를 들면, 120도 짜리 복소수를
1제곱+2제곱+3제곱+...+100제곱
을 구해야 한다면
1제곱+2제곱+3제곱이 0이고 4제곱은 곧 1제곱이므로
결국 100제곱만 남아서
1제곱의 값만 구하면 됩니다.
4. 어떻게 풀 것인가?
제가 대표적인 기출을 몇 가지 가져왔습니다.
1.
이 문제는 볼 때 억 소리가 저절로 나옵니다.
그냥 다 곱해보면 시간이 너무 오래 걸릴 것 같고...
또 답이 나왔어도 이게 진정한 최솟값이 맞는지 갈팡질팡할 수 있는 문제입니다.
문제에서는 원래의 수가 되라고 하였으므로 버튼을 눌렀을 때
1이 되어야 합니다.
A에 해당하는 복소수의 편각은 45도,
B에 해당하는 복소수의 편각은 135도입니다.
이거를 돌려서, 360도를 만들어야 하는 것이죠.
곱한 값이 최소가 되려면
상식적으로 B를 우선 돌려봐야 할 것 같습니다.
크게크게 더하고 작은 것을 더하는 느낌으로요.
그러면 B는 2번 더하면 벌써 270도 까지 왔습니다.
그리고 A를 2번 더하면 90도가 추가되어 1이나옵니다.
즉 4가 되겠네요.
물론, 곱하는 순서는 문제가 되지 않지만 문제를 풀 때는 이러한 식으로 가야합니다.
2.
식을 잠시 변형하면
첫째 식처럼 됩니다.
이 둘은 아까 3 파트에서 보았던 복소수 들인데
왼쪽은 8마다 1이되고, 오른쪽은 12마다 1이된다고 하였습니다.
그려면 8과 12의 최소공배수인 24가 n의 최솟값이 되겠네요.
둘 다 1이되어야 더했을 때 2가 나오니까요 ㅎㅎ
3.
이 복소수의 크기는 cos제곱 + sin제곱 이므로 1입니다.
즉 이번에도 편각만 더해주면 되는데, 편각이 1도인 것을
삼각비를 활용하여 알 수 있습니다.
-i의 편각은? 네. 270도 입니다.
즉 이것을 270번 곱하면 -i가 나오므로,
n은 270, 630, 990의 3개네요.
복소평면은 오일러 공식에도 적용할 수 있다만...(e^ix)
너무 극심화이기 때문에 별로 쓰일 수는 없겠습니다.
이 세 문제를 풀어봤는데, 아직
이것이 안 와닿는 07 08들이 대부분일 듯 합니다...ㅠㅠ
제가 당부드리고 싶은 것은
이 복소평면을 규칙성을 찾는 문제에 넣는 시도를
계속 해보면 좋겠습니다.
비록 크기가 1이 아니더라도, 지수법칙을 활용해
우리가 아는 복소수로 만드는 풀이법도 있습니다.
정말 거짓말이 아니라, 규칙성 문제는
최근까지 꾸준하게 출제되고 있고,
아마도 거의 모든 학생이 모의고사나 내신시험에서
보게 될 것입니다.
친구들이 12제곱까지 하면서 더하고 있을 때,
멋지게 복소평면을 '그려'서 '돌리'십시오.
최상위권으로 가는 발판이 반드시 될 것입니다.
부족한 제 설명 봐주셔서 감사합니다.
-유이 올림-
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인스타 ㅇㅈ 14
-
진심 한 100개는 있어도 다 채울텐데
-
앞으로 99계단 남음
-
올오카 가격 1
너무 사악해요..
-
나 대학가면 일어날 일 11
???:혹시 오르비 하지 않으세요?
-
어디에서 무엇을 긁어오는 게 좋을지, 어떤 걸 가져오는 게 좋을지 감 잡기부터 어려워요...
-
높은과는 걍 가나군만 쓰는 용자가 많나?? 의문입니다
-
고요하구만
-
내일 점메추 좀요
-
해주세요 작년에는 대성메가 둘다요
-
차단 다푸러봄 14
후
-
ㄹㅇ
-
결국 경계선 지능 장애같아서 울음
-
부산대 수준 8
부산대 사범대 정도면 인서울 어디랑 비빌까요??
-
그냥 새내기처럼 똑같이 놀고 학교생활하고 하나요? 아니면 조금 더 열심히 해야하나요?
-
반수 끝난 이후 썰 14
출결 별로 안 보고 중간기말 레포트 대체였던 강의가 있음 교수님도 별로 안...
-
존나 따 1
넵
-
그래도 학교다닐땐 주말에만 학원가서 입는 사복 신경쓰여서 옷 부족하다고 느꼈는디...
-
가디건 를! 산 나 10
아까 입고 나갔다가 의자에 던져둠••
-
. 0
.
-
애니프사 저격은 현평 ㅋㅋ 아 참고로 이 캐릭터는 어서오세요 실력지상주의 교실에...
-
ㅠㅠ
-
사실 그 옷이 그 옷이겠네 조거팬츠 회색 벌룬핏 흑청, 중청, 연청(빈티지) 하얀색...
-
취해서 톡 보냈다가 담날 아침에 이따구로 날라옴
-
본전공생이랑 이수학점수 같게하기위해, 6학년다니기가능?
-
새터에서 같이 술마시고 재밌게놀고 안면트고 친해져서 다음에 강의실에서 보면...
-
삼수 한다고해서 번아웃이 안올까? 갑자기 우울하네
-
베트남 +1 0
여기는 다른 호텔•• 전 뒹굴거리고 산책하는거 좋아해서 주로 호텔 주변에서 놀아요
-
얼버기 4
-
수능 전날 생윤만 공부 수능 아침자습 시간에 봤던 연계작품 중 마지막이...
-
아니면 성적바꿔가며 색깔놀이 하시는지 사실상 본인 성적 한번 넣으면 작년...
-
편의점 다녀와야겠다
-
ㅇㅈ 3
올해 초 베트남
-
수시는 거의 현역이 다 차지하거나 반수하는데 정시는 현역 찾기 하늘에 별따기임 ㄹㅇ
-
대학교에서 못생긴 인싸 13
는 학교생활 어떰?
-
대학생활... 0
둘 중 고민중인데 어디가 재밌을까? 둘 다 진학사에서 최초합으로 뜸
-
네…
-
예비 고3이고 고2 수학 모고는 3모부터 10모까지 2233 이였고 내신은 2인데...
-
이번수능을 대차게 말아먹고 1월초에 재수에 들어갈 고3입니다.. 현우진쌤 피셜...
-
공유 광기연기 개지리네
-
수능 전에는 중경외시만 가도 만족할거라 생각했는데 막상 보고 나니까 많이 아쉽기도...
-
소수과 기준? 0
1.어문 자체가 소수어과라고 보는데 그게 그냥 통합이 된 경우는 소수어과라고 볼 수...
-
성대모사라고 읽는다.
-
그렇다고진지한꿈은아니고그냥생각이없음
-
ㅈㄴ 재미있을거 같은데 ㅋㅋㅋㅋㅋㅋ 아. 그전에 연고대 입학은 하고 와야겠지?
-
고3 되기 싫다 0
흐흑
-
고대 보환융(신소재or전전이중전공)vs 서강대전자 성균관대 전전 2
고대보환융가서 이중전공했을때 메리트가 얼마나되는지 감이안와서요.. 서성한...
-
ㅋㅋㅋㅋㅋ 이거 예쁠거같은데 잘못입으면 ㄹㅇ 패션 테러리스트 되기 존나쉬울거같음...
-
연애썰 6
필기체 너무 귀엽네요 ㅋㅋ
모시깽이 합니다 ㅎㅎ
살다살다 복소평면 칼럼을 여기서 보네
고1 씹갓 ㄷㄷㄷㄷ
복소평면 오랜만이시죠? ㅎㅎ
랄부탁,,치고갑니다
조심스럽게 치시기 바랍니다
<3번문제> 오류가 있습니다.
n이 270, 630, 990 입니다. 감사합니다.
난데모 나이야
드 무와부르 정리를 벅벅
일부러 뺐습니다… 너무 심화라 ㅋㅋ
ㅠㅠ이 복소평면 나오면 원래 세트로 따라다니자나요...
근데 사실 제가 생각하기에는 복소수 단원이 가지는 의의는 수의 체계의 확장도 있지만, 식변형능력에 초점이 맞춰져 있다고 생각하는...
맞아요…ㅠㅠ 좀 더 이해 위주의 교육과정이었다면 어땠을까하는 생각이 드네요
중간때 무지성 제곱 벅벅하고 있었는데 아 ㅋㅋ
고1 씹goat이네
지금 07 그니까 중3 뉴빈데 읽어보면 도움이 되겠죠?
네. 대신 복소수에 대한 개념이 어느정도 있어야 최대효용이 날 듯 합니다
뭐야 복소수를 복소평면으로 풀면 개쉬울거같다! 라고 생각했는데 진짜 이런글이 있었네
이해해서 이제 좀 써보려고 하는데 시계 반대방향으로 재라는 게 어떤 뜻인지..그리고 허수부가 마이너스이면 각을 어떻게 긋는 걸까요? 제가 응용이 많이 딸려서 이해가 안 가네요ㅠㅠㅠ
수1 예습이 되어있었다면 더 잘 이해하실 수 있으셨을텐데… ㅜㅜ
시계 반대방향으로 재라는 말은 ‘동경’이라는 개념과 연관있습니다. ‘편각’은 일종의 ‘동경’의 각인것이죠. 이 동경에서는 예를 들면 45도 짜리 복소수가 있는데 편각이 45도라고 해도되고, -315도라고 해도 됩니다.
이때 ‘x축의 양의 부분‘을 나타내는 반직선을 기준으로
반시계 방향이면 + 부호를 쓰고, 시계방향으로 재면 - 부호를 쓰는 것 뿐입니다. 그리고 허수부가 음수이면 당연히 y좌표에 음의 실수를 넣으면 되겠지요…
앗 감사합니다 360°가 될 때 값으로 1이 나와서 360°인 주기를 찾는 거라고 생각하면 되겠죠?
넵 정확합니다
언제든지 복소평면이나 복소수 문제 관련한 질문 있으면 남겨주세요…!
감사해요 ㅠㅠ 함수 정리 글도 곧 나오게 되는 거죠?
혹시 나중에 내신 대비 방법 글도 써주실 수 있는지..
수험 생활 바쁘실텐데 이런 글 써주셔서 도움 많이 돼요 감사함다
와..도대체 이런건 어디서 배우신거죠? 진짜 이정도는 해야 최상위권이구나..도대체 왜 교육과정에서 폐지 됐는지 모르겠네요ㅠㅠㅠ 이럴거면 ㅠㅠ 열심히 이해해보겠습니다..
전 원래도 알고 있었고 서울에 있는 수학학원에서 배웠습니다…! 가끔 잘 하시는 학원쌤들이 가르치시는 스킬이라 전 정리만 해놓은것뿐입니다