[수2 자작 문제] 정적분으로 정의된 함수, n차함수의 비율 관계, n차함수 넓이 공식 (단, n=3, n=4)
게시글 주소: https://old.orbi.kr/00058868444
적당한 정적분으로 정의된 함수 문제입니다. '절댓값 -> 안이 0이 될 때를 기준으로 case 분류'와 '실근과 서로 다른 실근'에서 중근 복셈 정도를 고려할 수 있을 것 같아요.
참고로 출제자는 저는 아니고, 오르비 게시 부탁받아 대신 올립니다!
+ (나) 조건에서 우변이 {xㅣx<4}가 아니라 {xㅣx>4} 입니다!
+ (가) 조건을 삭제해주세요. 실근의 개수와 '서로 다른' 실근의 개수를 구분하는 것을 핵심적인 사고 과정으로 잡고 만들었는데 저도 헷갈린 것 같습니다 ㅋㅋㅋㅠ (풀어주신 분들께 오개념을 잡아드릴 뻔했네요)
[해설]
꽤 많은 분들이 공부하신 듯하니 해설을 남겨두겠습니다!
1. '예시 들어 핵심 파악'에 따라 0<t<x에서 x>=0이면 ㅣt-xㅣ=(x-t), x<t<0에서 x<0이면 ㅣt-xㅣ=(t-x)임을 확인할 수 있음. 따라서 g(x)를 x=0을 기준으로 구간 별로 작성 가능
2. '정적분으로 정의된 함수'에 따라 대입하고 미분하면 g(0)=0이고 g'(x)는 x>=0에선 integrate f(t) dt from 0 to x, x<0에선 - integrate f(t) dt from 0 to x임을 확인 가능 (함수 g(x)는 실수 전체의 집합에서 미분가능하므로 g'(0)=0)
3. 다시 한 번 '정적분으로 정의된 함수 -> 미분'과 f(0)=0에 따라 g''(0)=0이고 (이 과정에서 '구간 별 함수의 미분가능성' 혹은 '절댓값 함수의 미분가능성'을 통해 x>0와 x<0에서의 g''(x) 말고 x=0일 때의 g''(x)도 확인할 수가 있겠죠? g''(0)을 결정하는 부분은 220614 풀이 과정과도 비슷한 맛이 있는 듯합니다) g''(x)는 x>=0에서 f(x), x<0에서 -f(x)임을 알 수 있음
4. 방정식 f(x)=0의 서로 다른 실근의 개수, 함수 y=f(x)의 최고차항의 계수에 따라 총 6가지 경우가 존재합니다. 이때 (나) 조건에 의해 k<0임을 확인할 수 있고 alpha=2임을 확인할 수 있습니다. 이후 '다항함수의 비율 관계'를 통해 g'(x)의 양의 실근은 3, g(x)의 양의 실근은 4임을 확인할 수 있습니다.
5. 곡선 g(x)와 x축으로 둘러싸인 부분의 넓이가 2^8이라는 점에서 integrate g(x) dx from 0 to 4를 통해 k=-60임을 결정할 수 있습니다. (정적분의 기하적 의미가 둘러싸인 부분의 넓이이므로 직접 계산해도 되고 다항함수의 경우 일반화된 넓이 공식이 있으므로 공식을 활용해도 됩니다. 사차함수의 f(x)=k(x-p)^3(x-q) 꼴에서의 넓이 공식 'ㅣ최고차항의 계수ㅣ/20*(delta x)^5'을 활용하면 마찬가지로 k=-60임을 구하실 수 있습니다.)
6. f(x)=-60x(x-2)이므로 f(1)=-60*1*(-1)=60, 답 60
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
헤일리 결혼이벤트 추가해놔서 헤일리랑 하고싶긴한데 모드 추가캐 맘에들어서 걔네랑할지 고민대네
-
다이아 가보자
-
하방 보장이 너무 좋음
-
어릴때 김밥먹다가 김이 목구멍에 걸렸는데 빠지지도않고 ㄹㅇ 디지는줄알앗음
-
래그래그 4
요세무주히녕안 요게갈러자
-
낮에 자면 난 사람이 아니다
-
그래서 우울했던거 아닐까 내가 책임질수도 없고 내가 바꿀수도 없는 문제를 가지고...
-
아 6
사람아니야
-
스크린타임 인증 5
오르비가 인생.
-
경쟁력이 없어서 그런가
-
그건 아니더라... 무슨 변화인진모르지만 요즘은 새벽에 깨어 있어도 죽고싶진않음 갑자기 왜 바뀐거지
-
옯생이 현생을 거의 다 따라옴 이와중에 아침에 못일어나서 알라미 한시간은 레전드네
-
뀨 1
뀨
-
응....
-
나쁘지않음굳이 가서, 그런걸 뭐하러 배움? 이럴 필요가 없음자기가 안 쓸꺼면 안 쓰면 되는 것임
-
트럼프 wwe 1
이왜진
-
내일 칼럼 하나 올라올 듯
-
ㅇㅈ 2
너에게 인스타는 뭐니? 삶이옵니다…
-
주위 사람들은 사범대는 학벌이 중요하지 않다고 하지만 4
사범대 합격했는데도 더 높은 사범대 가고 싶음. 수시6장 다 사범대 차례대로 썼는데...
-
그때사람들은없지만
-
그래서 친구한테 충격요법으로 뭔가 실험해줌. 당할일은없을듯
-
온수샤워 20분밖에 안하고 보일러 21도인데 이 작은집에 도시가스왜케많이쓰이냐
-
문득 든 생각
-
롤 스킨 454개 니케 스킨 다수 보유(하나에 9만원)
-
가끔 잠이 안 오면 모의고사를 봣는데, 이 문제가 기억에 남음. (내가 봣던...
-
좀 일찍먹는아침인거지
-
오르비가 문제임 6
그냥 느낌이 와 느낌이
-
근데 이게 도형이 10
ㄹㅇ 억지스러운 문제들이 잇음; 진짜 딱 그 문제에서만 가능한 상황을 만들어놓은,,...
-
김채원말고 다른 단발녀들은 다 장발이 잘어울릴듯 단발 왜하는지모르겠음 긴생머리가최고임
-
하하
-
오르비앱은 왜 3
들어와있는데 폰 알림이 와요
-
당장 레드후드를 복각하라
-
옯스타는 많이 쓰고 개조시도도해봤는데 본계 돋보기보면 그냥 마음이 편안해짐
-
교사경이 좋은거 아닌가
-
문학, 독서 수특 사올꺼
-
진짜 거지댐.. 딱 수특 몇개 살 돈 남김 이제 펴늬점도 못가것네
-
자러감 2
ㅂㅂ 눈 존나오네 입춘이라매
-
어색해..
-
나는 당당해 4
당당하게 앱르비로 알림본다!
-
뽑았네 슈발 아오 저번에 진 펑펑효과 안 샀으면 3만원 아꼈는데
-
빠르게 니케 숙제하러..
-
알림이 모두 핸드폰 알림으로 오는
-
자기전 지듣노 0
좀 뭐랄까... 차분해짐 사람이
-
여러번 봐도 굿일 듯
-
다운받아서
-
이번에 2지망 대학으로 옮기면 학기당 학비 + 기숙사비 합쳐서 총 비용이...
-
나도 좀 되는거 같다 생각햇는데 몇개 풀어보니까 수1 얘도 완성된 수준은...
-
이미지적어드림 92
아무도관심안가져주면슬퍼
변수분리,절댓값,정적분넓이활용까지 키워드가 몇개여..
한 가지 키워드에서 발상적인 부분이나 풀이를 전개하기에 어려움을 느끼도록 하기보다 여러 가지 키워드를 섞어 문제를 만드는 것이 현 평가원의 트렌드라고 느꼈습니다
12~14번에 있을법한 난이도인듯하네요.
요즘 평가원이 정적분파트에 난이도를 올리는것같습니다.
동의합니다! 이 문제도 발상적인 것이 아니라 필연을 따라가다보면 풀리는 문제라 저도 14번 정도면 적당하다 생각해요 (22예시, 2209, 22수능, 2306, 2309 모두 14번엔 ㄱㄴㄷ가 나와서 왠지 이런 느낌으로 출제된다면 (가), (나) 와 넓이 256 조건을 적절히 분배해서 ㄱㄴㄷ로 만드는 게 더 이쁠 것 같다는 생각도 드네요). 문제를 풀다 보면 230614에서 맞이했던 익숙한 함수식도 발견할 수 있죠 ㅎㅎ
저는 수2에 발상이 필요하다는 의견에 동의하지 않는 편이라서ㅎㅎ 굳이 따지자면 미적분파트? 정적분파트는 통계랑 비슷하게 기본을 중시하는 파트인것같습니다
'발상이 필요하지 않다'와 '기본을 중시'한다는 말씀이 와닿네요...! 좋은 표현과 느낌을 받은 것 같습니다, 감사합니다
절댓값 + 변수분리는 어캐 시작하는게 좋을까요..?
걍 절댓값 풀어헤쳐서 시작해야하나
'예시 들어 핵심 파악'에 따라 t에 대한 적분이고 x는 상수이기에 x=-2, x=-1, x=0, x=1, x=2, ... 이런 식으로 몇 개 대입하다 보시면 x>=0일 때는 ㅣt-xㅣ=-(t-x)로, x<0일 때는 ㅣt-xㅣ=(t-x)로 풀어낼 수 있음을 확인하실 수 있을 거예요!
비슷한 문제가 빡모에도 있었는데 저는 이해가 잘 안되네요ㅜㅜ
맞아요 작년 빡모에도 있던 걸로 기억하고 올해 빡모에도 있다고 들은 것 같은데,,
예를 들어 x와 t는 서로에게 영향을 주지 않는 변수이니 (dx/dt=0) x=3이라 가정하면 g(3)= integrate ㅣt-3ㅣf(t) dt from 0 to 3 에서 ㅣt-3ㅣ은 [0, 3]에서 -(t-3)임을 확인할 수 있습니다. 이를 모든 양수 x에 대해 일반화할 수 있음을 확인할 수 있어요.
마찬가지로 x=-3이라 가정하면 g(-3)=integrate ㅣt+3ㅣf(t)dt from 0 to -3에서 ㅣt+3ㅣ은 [-3, 0]에서 (t+3)임을 확인하실 수 있습니다. 그래서 x>=0과 x<0일 때 g(x)를 각각 작성할 수 있고 이후는 '정적분으로 정의된 함수 -> 미분'에 따라 각 구간에서의 g'(x) 찾기 가능하니 풀이 이어나가시면 문제 없을 거예요!
240?
아닙니다! 최고차항 계수 처리 과정 혹은 다항함수 넓이 공식 활용 과정에서 오류가 있는지 확인해주세요
혹시 60인가용
60, 정답!
사차함수 넓이 공식 잘못썻네요 ㅠ
이차함수는 6, 삼차함수는 12 (서로 다른 세 실근을 가질 때 x축과 둘러싸인 두 부분 중 한 부분만의 넓이를 구할 때 사용하는 공식은 분모가 6이긴 하다만) 인데 사차함수는 20, 30 두 가지라 안그래도 헷갈리죠 ㅋㅋㅋ 거기에 (delta x)^n도 n=5라 계산도 복잡하고..! 수고하셨습니다
(나) 조건이 x<4가 아니라 x>4인데 (진짜) 출제자의 의도를 파악하신 건지.. ㅋㅋㅋㅋ 잘 푸셨네요
아 ㅋㅋㅋㅋㅋ 그래프 개형그려보니까 정반대 나오기도 하고 g(0)=0인데 조건도안맞아서 반대로 생각하고 풀었습니다 ㅋㅋㅋ
ㅋㅋㅋㅋㅋ 감사합니다
왜 저는 답이 음수가 나오는 거죠…? ㅠㅠㅠ
엇 저도..
그리고 (나) 조건에 등호 필요한 것 아닌가요...?
앗 (나) 조건이 x>4여야 하는데 오타인 것 같아요 (근데 글씨 되게 잘 쓰시네요!)
{xㅣx>4}로 확인하고 푸시면 등호 들어가지 않아도 되고 f(x)의 최고차항 계수가 -60 나와서 f(1)=60 나올 거예요, 죄송합니다 ㅜㅜ
맛있네요 잘 풀었어요
발문을 깔끔하게 수정해주셨군요..! 풀어주시고 타이핑 해주셔서 감사드립니다
g'(x)=0에서의 실근이 x=0에서 1개인가요??
문제 오류 같습니다. 원래 출제 의도는 다음과 같다고 알고 있습니다.
1. 방정식 f(x)=0 이 x=0에서 중근을 갖는 것은 x=0에서 두 개의 실근을 갖는 것이므로 실근 2개, 그에 따라 방정식 g'(x)=0이 x=0에서 삼중근을 갖는 것은 x=0에서의 세 개의 실근을 갖는 것이므로 실근 3개이기에 f(x)=px(x-q) (pq=/0) 꼴임을 알 수 있음
여기서 f(x)=px(x-q)이므로 서로 다른 두 개의 실근을 갖고 그에 따라 g(x)=ax^2(x-b)꼴이 되므로 (x<0)을 접어
2. 방정식 f(x)=0이 서로 다른 두 실근을 갖는 것은 두 개의 실근을 갖는 것이므로 실근 2개, 그에 따라 방정식 g'(x)=0이 ax^2(x-b)=0 (ab=/0) 꼴이므로 (모든 경우에 대해 x<0 일 때의 그래프를 x축 대칭해도 근의 값에는 변화가 없죠) 서로 다른 두 개의 실근을 갖는 것이므로 실근 2개.
그런데, 방정식 f(x)=0이 중근을 가질 때 (가) 조건을 만족시키지 않음을 보인 논리에 따르면 g'(x)=ax^2(x-b) (ab=/0) 인 상황도 한 개의 중근과 한 개의 단일근으로서 총 세 개의 실근을 갖는 것이므로 실근 3개를 갖는 것을 확인할 수 있습니다. 따라서 모든 경우에 대해 (가) 조건을 만족하는 경우가 존재하지 않기에 문제 오류 같네요.
수정하겠습니다, 죄송합니다 ㅜ