2017학년도 수능 가형 30번 해설 + TMI
게시글 주소: https://old.orbi.kr/00060995488
전설의 그 문제입니다. 지금까지도 수많은 수험생 커뮤니티에서 킬러 문제의 대명사로 회자되고 있을 정도로 그 당시에는 충격적인 난이도를 자랑했던 문제였으며 실제로도 다항함수에 대한 충분한 이해도가 없다면 처음 풀 때 어떻게 풀어야 하나 막막할 수도 있는 문제입니다. 기울기 함수, 쌩 수식 풀이 등 정말 다양한 풀이법이 존재합니다만 오늘은 제가 이 문제를 풀었던 방법을 말씀드리려고 합니다.
먼저 (가) 조건에 따라 다음과 같은 식을 세울 수 있습니다.
주의하셔야 할 점은 x>a에서만 위 식이 성립한다는 점과, g(x)가 사차함수라고 해서 f(x)가 삼차함수라고 단정지으면 안 된다는 점입니다. 가령 예를 들자면...
f(x)가 위와 같이 (x-a)라는 일차식이 분모에 있는 분수함수여도 g(x)가 사차함수라는 조건에서 벗어나지 않기 때문입니다. 일단 (가) 조건은 이 정도 보면 충분할 듯 합니다. 이제 (나) 조건을 해석해봅시다.
(나) 조건은 함수 f(x)에 대한 조건입니다. 위의 f(x) 식이 어떠한 의미를 가질 수 있는지 생각해보면...
위와 같은 해석을 내놓을 수 있습니다. 즉, (나) 조건을 위와 같은 관점에서 해석해보면, (x,g(x)), (a,0)을 잇는 직선의 기울기가 x값의 변화에 따라 커지거나 작아지거나 하는데, 이 때 극대가 되는 지점이 최소한 2개는 있고 (x=α일 때와 x=β일 때) 그 때 x=α일 때와 x=β일 때의 기울기가 같다는 뜻입니다. 말로만 설명드리면 조금 이해가 안 되실 수도 있으니, 기하적인 상황을 한번 살펴봅시다.
위 그림과 같이, (a,0)에서 y=g(x)라는 함수에 있는 아무 점이나 잡고 접선을 계속 계속 그려보면 직선의 기울기가 증가하거나 감소하기도 하다가 어느 특정 지점(즉, (a,0)에서 y=g(x)에 그은 접선일 때)에서 기울기가 '순간적으로' 최대가 되거나 최소가 되는 것을 발견하실 수 있습니다. 그러면 이 때가 직선의 기울기가 극대가 또는 극소가 되는 지점임을 납득하실 수 있습니다. (위 그림에서 빨간색 직선일 때가 직선의 기울기가 극대, 파란색 직선일 때가 직선의 기울기가 극소가 되는 지점입니다.) 그런데 문제에서는 직선의 기울기가 극대일 때 동일한 극댓값, 즉 기울기를 갖는다고 하였으므로...
위와 같은 상황임을 알 수 있습니다. 이제 (다) 조건을 해석해봅시다. f(x), 즉 이 직선의 기울기가 극대 또는 극소가 되는 지점의 개수가 g(x), 즉 우리가 지금 직선을 갖다가 긋고 있는 저 사차함수가 극대 또는 극소가 되는 지점의 개수보다 많다는 뜻입니다. 위 그림의 경우, 직선의 기울기가 극대가 되는 지점은 저 빨간 직선이 접하는 두 점, 즉 x=α일 때와 x=β일 때, 그리고 극소가 되는 지점은 그 사이에 있는 파란 직선과의 어떤 접점이 있습니다. 즉 서로 다른 3개의 지점에서 극대 또는 극소가 되는군요. 그런데 g(x)라는 사차함수도 보시면 2개의 극댓값, 그리고 1개의 극솟값을 가지기 때문에 역시 서로 다른 3개의 지점에서 극대 또는 극소가 됩니다. 따라서 우리가 찾는 상황과 비슷하기는 하지만, 그 상황은 아닌 모양입니다.
직선의 기울기가 순간적으로 최대가 될 때 공통접선이 되게끔 하며, 사차함수의 다양한 개형들을 떠올려보면...
다음과 같은 경우, (다) 조건까지 충족시킴을 알 수 있습니다. 직선의 기울기가 극대 또는 극소가 되는 지점은 총 3개가 있지만, 사차함수는 단 1개의 극댓값을 가지기 때문입니다. 여기서 주의하실 점은, 사차함수가 꼭 '삼중근'을 가질 필요가 없다는 것입니다. (즉, 사차함수의 변곡점에서의 미분계수가 0이 될 필요는 없습니다.) (a,0)과 사차함수의 변곡점을 잇는 직선을 그었을 때, 그 직선의 기울기가 사차함수의 변곡점에서의 미분계수보다 작은 모든 경우도 (가), (나), (다) 모든 조건을 만족시키기 때문입니다.
이제 M을 구할 차례입니다. M은 위 그림에서 직선의 기울기가 극대가 될 때의 기울기이므로, (a,0)과 (α,g(α)), (β, g(β))를 잇는 직선의 방정식은 y=M(x-a)로 표현할 수 있습니다. 그럼 인수정리에 의해...
라는 식을 세울 수 있습니다. 이제 여기서 무엇을 해야 하나 감이 안 잡히시는 분들도 계시리라 생각합니다. 별 생각 없이 미분을 해도 답은 나오지만, 여기서 미분을 해야 하는 이유를 설명드리면 현재 답이 되는 상황에서의 사차함수는 앞서 보여드린 그림에서와 같이 기울기가 0이 되는 지점이 사차함수가 극대가 되는 지점에서 최소 1개 존재하고, 변곡점에서의 미분계수가 0이 된다면 최대 2개까지 존재할 수 있기 때문입니다. 즉 식을 g(x)에 대해 정리하여, 미분계수가 0이 되는 지점이 2개 이하가 되도록 해야 합니다. 식을 g(x)에 대해 정리하면
과 같고, 양변을 x에 대해 미분하면
이 되며, g'(x)=0이라는 방정식을 푸는 것은 곧
을 푸는 것과 같습니다. 이제는 그냥 삼차함수 문제가 되었습니다. α와 β에 대한 관계가 주어져 있기에 β=α+6루트3이라고 놓고 풀어도 상관은 없습니다만, 계산의 용이성을 위해 α=-3루트3, β=3루트3으로 놓는 것이 좋겠습니다. 여기서 α와 β의 값을 어째서 아무렇게나 정해도 되느냐고 물으신다면, α와 β 값의 설정은 곧 내가 원하는 만큼 삼차함수의 그래프를 x축 방향으로 평행이동시키는 것과 같기 때문에 M의 값에는 영향을 미치지 않기 때문입니다.
아무튼, α와 β를 앞서 말씀드린 것처럼 놓으면...
을 풀어주면 됩니다. 4x(x-3루트3)(x+3루트3)의 그래프를 그려보면,
위와 같고, g'(x)=0이 되어야 하는 서로 다른 x의 개수는 최소 1개, 최대 2개이므로, 4x(x-3루트3)(x+3루트3)=M의 서로 다른 교점의 개수는 최소 1개, 최대 2개여야 합니다. 따라서 M의 값의 범위는 4x(x-3루트3)(x+3루트3)의 극댓값보다 크거나 같으면 되며, 이 극댓값은 삼차함수의 비율관계에 의해 4x(x-3루트3)(x+3루트3)에서 x에 -3을 대입해주면 되므로 이를 계산해주면 (-12)x(-18)=216이 나옵니다. 따라서 M은 216보다 크거나 같아야 하기에 M의 최솟값은 216입니다. (EBSi 기준 오답률 96.5%)
*TMI
이제 문제 풀이와는 별 상관이 없지만, 이 문제에 대한 썰(?)을 좀 풀어드리겠습니다. 여기까지 풀이를 보셨거나 전에 이 문제를 힘겹게 푸셨던 분들이시라면 대체 왜 이런 극악한 난이도의 문제를 출제하였는지 궁금하실 수도 있습니다. 이를 알기 위해서는 당시 2017학년도 6월 모의고사와 9월 모의고사 등급컷을 살펴볼 필요가 있는데,
이게 당시 6월 등급컷이고
이게 당시 9월 등급컷입니다. 같은 사진 아닙니다 (...)
1컷 96, 2컷 92, 3컷 88이라는 경악스러운 등급컷이 6월 9월에 연달아 나오면서 평가원에서 수능 가형 1등급 컷을 92점으로 낮추기 위해 이런 고난도 문제를 출제한 것으로 보입니다. 그리고 실제로 수능 등급컷을 보면...
1컷과 2컷의 경우 정말 절묘하게 4점이 내려간 모습입니다...
이 이후에도 2018학년도 수능 가형 30번도 핵폭탄을 떨구는 등 평가원의 초고난도 킬러 기조는 2017학년도, 2018학년도 2년 동안 이어지다가 통합 수능 체제를 대비하여 킬러를 약화시키고 준킬러를 늘리는 방향으로 변별력을 확보하기 시작했습니다. 아무튼 이쯤에서 글을 마치겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
메이저리그 퀄리파잉 오퍼가 2105만달러인데 리버풀이 트렌트 알렉산더 아놀드에게...
-
오홍홍
-
ㅈ반고 다녀서 내신은 1인데 고2 모고는 3 정도 나오고 내년에 내신 미적 해야해서...
-
밤에 올까 0
별로 활발하지가 않네
-
좀 해 난 개 스나라서 여기가 제일 궁금한데 50명넘게 지원했으면서 12명들어옴
-
692점인 제 학생이 1등임 ㄷㄷ
-
그냥 원서 접수 한 이후로 너무 우울함 수능끝났을때도, 진학사 돌려볼때도 기분이...
-
노래 진짜 잘 만든 듯
-
얼버기 1
아무튼 얼리버드 맞음
-
제 꿈이였어서… 궁금함뇨
-
셈퍼님 계산식도 뜨는 거 있으신분 계시면 링크 좀 주세요ㅠㅠ
-
듣는 사람 입장에서 어떻게 느껴지시나요 불쾌하지 않고 괜찮나요?•••
-
뭔가 새롭네요
-
제발
-
언기사2 0
올해 현역으로 화미생지 쳤고 22122 받았는데 선택과목 싹다 바꾸려고 합니다...
-
제목이 곧 내용입니닷
-
아니 강기원 복테 다 풀어서 당연히 만점인 줄 알았는데 2번 3f(3)을 3g(3) 구함..
-
서강대 인공지능 0
나보다 높은 점수인 놈들은 숨어있지말고 퍼뜩퍼뜩 점공을 하도록.
-
고2 선택과목 물리1 해서 인강으로 하려ㅏ는데 추천점 해주십쇼..! 개념 한번도...
-
손은정T 개념학습이 끝난 상태입니다 현장강의 강준호T 듣는 게 화2 50점에 거의...
-
눈이 썩겠네~에 눈이 썩겠네
-
내신대비용 크포 1
3월전까지 필수이론,기출문제 수강하고 여름방학부터 내신대비용으로 크포랑 기출한번더...
-
안녕하세요, 조언 구하려는 예비 반수생입니다. 대성마이맥 패스만 이용하고 성적은...
-
아직희망을버리지않았다
-
하 술 좋아하는데 ㅜㅜㅜ
-
제가 김상훈T 현강 풀커리 타고 있는데 독서는 어느정도 잡히는데 문학이.. 많이...
-
수능 말아먹어서 김과외로는 과외 절대 못구할텐데.. 고딩대딩 자소서,생기부나 팔아야...
-
777 4
럭☆키
-
제발 보내주세요 감사합니다 쪽지 ㄱㄱㄱㄱ
-
????
-
저어는 연어를 좋아해요
-
수학과 진로 0
수학과 간다음에 ai대학원 가는 경우가 드문가요? 아니면 이 루트가 어렵나요? 결국...
-
신은 월즈로 사겠습니다 사실 이 세명중에 뭐살지 고민중이라서 그런거지 절대...
-
ㄹㅇ 방금전까지 그런줄알았음ㅠㅠ
-
점심 뭐먹지 8
-
받을 예정이세요?
-
여러분들이라면 어디갈 것 같나요??
-
쫄튀라고 생각해야지~~
-
ㅈㄴ야함
-
사화 과목 자체가 처음이라 낯설어요..정말 부탁드립니다
-
입시에서 고마웠던 사람들한테 10개 뿌릴까
-
경희 행정이고 신뢰구간은 99퍼.점공률은41.2퍼 추합은 작년에 9명 재작년에...
-
이거 0
이런 게 스나인거죠?
-
낮에 져주지만 밤에 적극적인 여자
-
11월30일까지 15만원에 메가패스 같이 들으실분 구합니당 패스 제가 보유하고...
-
서울대abc 2
평가 기준이 대충어케됨?
-
난 오티 듣는것도 순공으로 치는 존나 양심없는 인간임 8
오티 가쥬아~~~~~~~ 근데 솔직히 어제랑 그제 진짜 머리 에너지 ㅈㄴ 쓰는...
-
오늘 단과 3
왼쪽엔 물평 오른쪽엔 여붕이
재밌게 잘 읽었습니다, 저랬는데도 1등급 컷이 92점이던 가형 시절 시험지들은 참 괴랄하다는 생각밖에 들지 않네요.. ㅋㅋㅋ
맞습니다. 그런 점을 보면 왜 사람들이 괜히 수학 가형을 어려운 수학 시험지의 기준점으로 삼는지 알 것 같기도 합니다. 2017학년도 수능 나형 30번도 굉장히 만만찮았던 문제로 기억하는데 이 문제가 너무 임팩트가 컸던 나머지 상대적으로 묻힌 감이 없잖아 있는 것 같네요ㅋㅋㅋ