유명한 극한 조건
게시글 주소: https://old.orbi.kr/00062143741
나름 알려진 극한 조건입니다. 아시는 거라면 복습차 빠르게 풀어보시고, 처음 보신다면 경험치 쌓기 위해 지금 풀어보세요!
(자작입니다)
극한도 확실히 할 얘기가 많은데, 칼럼 주제로 한 번 다뤄볼까말까 고민 중인 상태입니다.
팔로우해두시면 퀄리티 있고 유익한 자작문제와, 칼럼들을 놓치지 않고 다 확인하실 수 있습니다 ㅎㅅㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이번수능 대충 언미영사문생1 23212 받았습니다 순수과학에 흥미가 생기기도했고,...
-
갈드컵 안열리네 예전에 이거갖고 말 엄청 많았던걸로 기억하는데
-
경북대 치대 논술 가야할까요??ㅠㅠ 지금 6칸입니다ㅠㅠ
-
삼반수 할까 2
작수 55332 올해 33231 흠
-
내신 대비로 어떤 문제집이 괜찮은가요???
-
어느길로갈까요 7
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 2
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 4
왜 힐이안되냐
-
기적의 수면패턴 3
8시수면 4시반기상 ㅋㅋ
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 3
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 3
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 1
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
-
그냥 접겠다..
-
공통수학 (22개정) 공부 통합사회 (22개정) 공부 독서 심슨 정주행
-
자라. 4
3시 전에 자야지
-
이건 팩트인듯요
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
-
차 많이 막히려나 가기 존나 귀찮네 ㅅㅂ
-
인생이힘들다..... 나데나데나데나데나데나데해줄미소녀한테 어리광 부리고 싶다
-
얼버기 4
9시에 잠들었는데 지금 일남 ㅅㅂ 4시엔 다시 자야지
-
이훈식 오지훈
수2를 모르니까 아쉽네 ㅋㅋ
헉 ㅠㅠ
36?
중복도?
중복도?? 가 뭘까요
(가) 조건이 f(x)의 특정 인수가 중복된 개수를 알려주는 식이라서 '중복도'라고 사람들이 불러요
헉 그렇군요 부르는 말이 있는지 처음 알았네요
나름 유명한 극한식은 (가) 조건을 말씀하시는 건가요, 아니면 (나) 조건을 말씀하시는 건가요?
둘 다였습니다.
(가)는 워낙 유명하고...
(나)처럼 절댓값을 처리해야 하는 상황도 빈출되는 상황이죠. 이 문제의 경우엔 바로 인수 두 개가 필요하다는 게 보이지만, 좀 상황을 꼬아서 숨겨두면 되게 어려워지는 부분이라서, 칼럼 주제로 쓴다면 자세히 써볼게요 ㅎㅎ
바로 테일러급수 ㅋㅋ
ㄷㄷ
(가) 조건을 보니 18학년도 6모 21번이 떠오르네요
로피탈써도 계산이 많다는 그 문제..ㄷㄷ
x-1의 제곱 플 x-2의 제곱 맞나요? a=0
36!!
절댓값 기준으로 +-상수가 나오는데 둘이 같아야하므로 a=0
과조건 맞죠?
아뇨! 저기까지 있어야 결정돼요. 왜 과조건이라고 느끼셨나요?
(가)조건에서 2라고 콕 찝어줄 필요는 없어보여서요
그렇지 않습니다. 만약 저 자리에 2가 아니라 1이 들어간다면, 함수는 결정되지 않습니다.
(가) 극한식이 존재한다는 조건만으로는 f(x)가 (x-2)를 인수로 몇 개 가지는지 알지 못합니다.
네 그래서 저라면 b로 두고 1은 안된다고 해도 되는거 아니냐는 뚯이었어요
그렇다면 문제가 과조건이라는 지적은 적절하지 않습니다. 저 문제는 상황을 결정하기 위한 최소한의 조건을 사용하고 있었기 때문이죠.
그렇게 주지 말고 다른 방식으로 줄 수도 있었겠다라고 하신다면
그건 적절한 말인듯 합니다!
허나 저 극한 조건 자체가 제가 만든게 아니라 평가원에서도 기출된 꽤나 유명한 조건이기에, 저는 그대로 사용했습니다.ㅎㅎ
이 게시글의 목적은 기출된 적이 있는 극한조건을 알려드리는 거였어요.
아무튼 의견 감사합니다!
네 제 단어선택이 부적절했네요
좋은 문제 감사드려요
혹시 저기 f(lxl)에서 절댓값을 안넣어도 답은 다르겠지만 문제 자체에 오류는 없는 건가요??
네 오류는 없습니다. 그 경우 답은 100이 되겠네요ㅕ
감사합니다!