칼럼10) 소소한 테크닉
게시글 주소: https://old.orbi.kr/00062374843
나름 알려진 편이고, 은근히 유용하며 개념적으로도 의미가 있는 '소소한' 테크닉 하나를 소개해드릴까 합니다.
이미 알고계신 것도 있을 거고, 아마 처음보는 것도 있을거에요!
이는 e^x의 재밌는 특징에서 시작됩니다.
y=e^x는 도함수가 e^x이죠. 원함수와 도함수가 식이 같다는 겁니다. 즉, 원함수의 함숫값이 그 점에서의 미분계수인 셈이죠. x=a에서 함숫값은 e^a, 미분계수도 e^a일겁니다.
기울기가 e^a라는 것은, x축으로 1 이동할 때 y축으로 e^a만큼 이동한다는 뜻이죠. 그런데 마침 이 지수함수 위의 점(a,e^a)는 함숫값이 e^a네요.
여기서 다음 사실을 알아낼 수 있습니다.
e^x 위에 점 (a, e^a)에서의 접선은 x절편이 a-1이겠네요!
이걸 뒤집어서 말하면, (b,0)에서 y=e^x로 접선을 그으면 접점은 x좌표가 b+1인 곳에서 생긴다는 겁니다. 기울기는 e^(b+1)이 되는 것이구요.
y=e^x 뿐만 아니라 얘가 평행이동되었을 때도 마찬가지입니다. 그 함수의 점근선 위의 점에서 접선을 날렸을 때 접점은 x좌표가 1 큰 곳에서 생깁니다.
아래 문제에 적용해보겠습니다.
기출 문항입니다. 이미 다들 잘 알고 계실 것 같습니다.
최대인 순간은 바로 나오지 않아서 계산을 좀 해줘야 하지만, 최소인 순간은 분명하죠. 기울기인 양수 a가 최대인 순간과 y절편인 음수 b가 최소인 순간이 일치하는데, 다음과 같이 양쪽에 동시에 접할 때입니다.
(그림 출처: ebs)
일단 대칭에 의해 x절편이 3/2인 걸 캐치한 상황에서, 접한다는 정보를 이용해 a를 구해야 합니다. 이때 앞서 알려드린 소소한 테크닉을 이용해볼게요. 그림에서 표시된 t가 3/2보다 1만큼 큰 5/2겠죠. x=5/2일 때 f(x)의 함숫값은 루트 e입니다. 따라서 이 순간에 a는 루트e네요.
물론 s를 이용해서 구하셔도 됩니다. s의 경우에는 x좌표가 1/2이 되겠죠. g(1/2)= -루트e니까 기울기는 루트e여야겠지요. (g(x)는 아래로 그려진 상황이니까 -부호를 빼줘야 합니다.)
어찌됐건 직선을 이렇게 완성할 수 있겠습니다. 훨씬 간편하죠!
평행이동뿐만 아니라 확대축소됐을 때에도 이런 정보를 뽑아낼 수 있습니다.
이 함수의 경우에는 x축 위에 (a,0)에서 접선을 날렸을 때, 그보다 x좌표가 1/5만큼 큰
이 점에서 접점이 생기겠죠. 함수가 5배 축소되었으니 앞서 말씀드린 1차이난다는 경향성도 5배 축소하여 1/5이 되었다고 생각하시면 되겠습니다. 주의할 점이 있다면, 이때는 미분계수도 5배를 해줘야 하겠네요. 그래서 식을
다음과 같이 써낼 수 있습니다. 근데 이건 실수 가능성도 있어보이니(???: 아 ㅆ 5배 안했다) 이건 검토용으로 사용하시면 좋을 것 같습니다.
이 특징은 y= lnx 에서도 당연히 읽어낼 수 있겠죠. 대신 1 차이 난다는게 x축이 아니라 y축의 얘기로 바뀝니다.
e의 x승 놈을 뒤집은 거로 봐도 괜찮고, lnx의 도함수가 1/x이란 것에 착안하여 기울기 해석을 하셔도 됩니다. (기울기가 1/m라는 것은, x축으로 m 증가할 때 y축으로 1 증가한다는 뜻!)
한편, 다음과 같은 의문이 드실 수 있습니다. "왜 하필 e^x에서만?"
적절한 의문이죠. 사실 이 얘기는 모든 지수함수에 대해 가능합니다.
얘도 원함수와 도함수가 상수배 차이나는 꼴이므로 다음 정보를 이끌어낼 수 있습니다.
a=e일 때는 저 차이가 1이 되었던 거죠.
준비한 내용은 여기까지입니다. 원함수와 도함수가 관계되어있다는 지수함수의 성질을 이용한 재밌는 해석이었다고 생각합니다. 앞으로도 재밌는 칼럼과 자작문제 많이 보여드리겠습니다. 유익했다면 좋아요 부탁드리고, 팔로우 해두셔서 꼭 확인해보세요!
0 XDK (+1,000)
-
1,000
-
으흐흐 1
-
커뮤 언급이나 훌리가 건동에 비해 극도로 적은거같음
-
전 잘 모르겠어요
-
나도 나중에 누군가에게 수학을 꼭 알려주고싶다
-
맞팔구 3
똥벳이랑 똥테가 잘 어울릴거같아서요 오네가이시마스~
-
대체 누구한테 있는거지
-
법제처장 "헌법재판관 임명보류는 정당한 권한…위법 아냐" 1
최상목 대통령 권한대행 부총리 겸 기획재정부 장관이 마은혁 헌법재판관 후보자 임명을...
-
무물보받습니다 7
제빵대 재학중 22수능 적백 곧 개강해서 망햇음 기하n제 푸러야함 나형 가형 통합...
-
동대 터졌다는데 5
얼마나 폭난거에요? 궁금하네
-
나 기만이라고 해줘 20
자존감 좀 채워보자 씨발 솔직히 나보다 수능 잘 본 사람 올해 열한명밖에 없잖아
-
100점나와서기분조아짐
-
팩트는 걍 ㅈㄴ 부럽다는거임..
-
“엉터리 투표지 많아서”…尹대통령, ‘선관위 계엄군 투입’ 직접 지시 1
윤석열 대통령은 12·3 비상계엄 당시 중앙선거관리위원회에 대한 계엄군 투입을...
-
롤하다가 3등급대 친구 만났었는데 자기는 시험 하루전에 공부해서 삼등급이고...
-
어케요? 아 개잣댔네
-
개꿈이져?
-
우원식 국회의장 5∼9일 방중…中서열 3위 자오러지 초청 1
(서울=연합뉴스) 이봉석 기자 = 우원식 국회의장이 5∼9일 대표단을 이끌고 중국을...
-
제 전닉 공개함 5
하제타임 무려 일본어 온점 하나가 없었음 ㄷㄷㄷ
-
[속보]윤 대통령 "국정원, 수사권 없고 검거는커녕 위치 추적도 못 해" 2
4일, 헌법재판소.
-
상위 1퍼 옵창 이런건가..
-
제곧내
-
누군지 궁금하게 하지마라
-
내가 원서넣은 과 vs 한라인 윗대학 문과 투표하는 게시글 가서 후자에 투표했습니다
-
냥대탈출지금 1
right now
-
재밌네 부럽다 100만유튜버면 내가 평생 벌 것보다 더 많은 돈을 벌었겠지 잘생기고...
-
지듣노 머타치임 2
https://youtu.be/SbxR25brgoE?si=PXcYEpmJhFHbLZA...
-
원래 역류성 식도염 심했는데 싹 나음 ㅋㅋ
-
유튜브 닉네임 추천좀 14
기깔난거 만들어주기면 가지고있는 덕코 다드림
-
이분의 의지를 받들어서 동국탈출지금 이라고 닉변하려는데 어케생각하심?
-
고려대상권어떰? 2
제곧내 인생네컷이없다든가 맨날 가는 밥집만 가야한다던가 그렇ㅈㅣㄴ않죠..?
-
클라우드 공학
-
30이 1000이 됨
-
기출 여러번 풀어보려는데 1990년대부터 2010년꺼까지 좀 계산이 더럽고 요즘...
-
자기 나간다고 여기저기 광고하는 사람들은 왜 그러는거에요?
-
자꾸 어디선가 튀어나오는구나
-
거지라 그런곳 못가봤어
-
왜 60점대일까요
-
커뮤니스트인가요?
-
mypenisbig
-
문학 공부 2
강기분 문학을 들을까요? 아니면 우진문학상 참여를 통한 실전 적응을 할까요?
-
담임이 수학 기본개념 후 기출 박치기 하라는데….하 ㅋㅋㅋㅋㅋ 18
기본 개념 배우고 실전개념 전에 기출 박치기가 가능할까요? 조언 부탁드립니다 현우진...
-
반추하다=되새김질하다
-
아주 귀여워 코끼리 으흐흐
-
[여르비 닉 기억해 놨다가] https://orbi.kr/00071783435...
-
오래 쓴 샤프가 잇는데 샤프심너무 많이 넣어서 막힘 Rip…
-
맞팔해요 3
애니프사 환영 아니여도 환영
오늘도 개ㅊ를 벅벅
오우쉣
ㄷㄷ
무슨 말인지 이해 못하는 문돌이들 개추 ㅋㅋㅋ
무민귀여워요
으악 미적이다
으악악
아니 ㅅㅂ 이게 뭐지.,?