24학년도 9평 수학 손해설지 및 간단한 총평
게시글 주소: https://old.orbi.kr/00064305235
2024 9월 평가원 모의고사 수학 by 익성T.pdf
시험 보느라 대단히 고생 많았습니다.
파급 수학 팀의 익성T에요 :)
오류 및 오타제보, 질문, 제안 등등 언제든 환영입니다.
간단한 총평을 남기자면 다음과 같습니다.
9번: 교육과정 해설서와 교과서에서는, '삼각함수의 그래프를 그릴 수 있다.'라고 명시하고 있고,
sin함수와 cos함수의 그래프의 관계를 말하고 있습니다.
10번: 수능 기출문제의 재활용입니다.
제가 강의에서 자주 사용하는 말인 '초벌 그래프'를 그린 후
계산으로 자신있게 밀고 나가야 합니다.
13번: 구간별 함수를 구성하는 두 함수식이 딱 봐도 유사해 보입니다. 직선대칭임을 활용하여 빠르게 그림으로 치고 나가셨어야 합니다.
14번: '추론'에 정당성을 부여할 수 있어야 합니다.
교과서에서의 지수함수와 로그함수의 그래프 주제는,
역함수 관계가 가장 중요하지만
'점근선'또한 힘주어 이야기하고 있습니다.
15번: '극한의 성질'문제풀이에서 '반복되는 작업'에 대한 캐치가 필요하고, 자신있게 치고 나가며 풀이해야 합니다. (실전은. 기세야.) 캐치하지 못 해도 상관 없으나, 시간은 제한되어 있습니다.
21번: sigma 조건을 어떻게 풀어헤쳤냐에 따라 계산량이 달라졌을 것입니다. ‘13'은 뒤의 확률과통계 문제에도 등장하네요.
확28: 발문을 정확히 독해하고, '기록'하면서 풀어야 합니다.
확률이 완전제곱으로 표현되는 경우를 잘 이해해보세요.
확29: 손풀이에는 모든 경우를 망라하여 놓았으나,
확률을 묶어 경우의 수를 셈하는 것으로 풀이했어야 합니다.
확30: '반복'되는 작업입니다. 케이스 분류는 맞는데, 케이스 분류가 아닙니다.
미28: 6월 모의평가에 비해서는 현실적인 난이도입니다.
'정적분으로 정의된 함수'에서 무엇을 배웠는지, 정직하게 풀이하면 됩니다. 다른 요행은 필요하지 않아용.
미30: '미적분'과목의 '미분법'은 무엇이든 다 할 수 있습니다.
변수를 두 개 이상 설정해도 괜찮습니다. 출제진을 믿으세요.
기29: 기출문제를 살짝 낯설게 틀어 상황은 그대로 출제하였습니다. 타원의 정의를 활용하여 선분의 길이의 차의 최솟값 조건을 선분의 길이의 합으로 바꾸는 것은 이제는 개념의 영역인 듯해요.
기30: 완성도가 높은 문항입니다. '벡터의 상등'을 정확하게 알고 있었어야 했고, 미지수 설정에 대한 거부감이 없었어야 합니다.
비주얼은 쉬워보이는데 막히는 문항들이 꽤 있을법한 시험지였습니다. 평가원이 뒷통수 때리는게 하루 이틀이 아니라 9평 수학이 쉽게 느껴졌다고 수학을 내려놓친 않으셨으면 합니다.
9평 이후 EBS 수특, 수완 선별좌표 최대한 엑기스만 추려서 올릴 계획입니다.
알다시피 최소한의 문제로 최대 효율을 낼 수 있다는 것은
당장 아래 글 링크를 보시면 아실겁니다 ㅎㅎ
20 수능 나형 28번 적중:
20 수능 FINAL EBS 나형 적중 자료(28문항):
좋아요, 팔로우 해주시면 놓치시지 않을 듯 합니다.
모두들 수고 많으셨습니다 ㅎㅎ
감사합니다.
최신 기출 중 특정 단원 특정 난이도만 무료로 풀고 싶다면?
모킹버드 n제 코너 소개 링크:
지인선 님이 참여한 싸맛과 실모를 풀고 싶다면?
해당 사이트는 아직까지 데스크탑에 최적화 되어있습니다.
데스크탑이나 태블릿 이용을 권장드립니다.
'가입만' 해도 N제 코너는 평생 무료이며
자작 실모 1회 추출도 가능합니다.
(그림을 클릭해도 사이트로 연결됩니다.)
(오르비의 허락을 맡고 올리는 게시글입니다.)
익성T 소개
모킹버드 소개글: https://orbi.kr/00063268579/
모킹버드 무료 모의고사: https://orbi.kr/00063739018/
지인선 N제 2024: https://orbi.kr/00062075350/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅇ?
-
노베라서 그런가 더 어렵게 느껴지는것 같기도 진짜 딴곳으로 드랍할까 싶어도 꾹 참고 있습니다
-
탐구도 기출 한번 돌려야되나? 6모 21 이렇게 나오긴 했음
-
윤성훈쌤 솔직히 0
펭귄같으셔서 커여움
-
"여러분, 계엄은 범죄가 아닙니다"…尹 자필 편지 공개 [전문] 0
윤석열 대통령이 내란 수괴 등 혐의로 고위공직자범죄수사처(공수처)에 체포된 15일...
-
ㅋㅋ
-
거 사내들끼리 사귈 수도 있는거지;
-
논리 평가좀 2
전제가 참이면 결론이 참 대우명제는 결론이 거짓이면 전제가 거짓 전제안에 공리가...
-
1. 면접 건물 앞에서 사범대 선배들이 응원해주더라. 지원한 과 선배한테 핫팩...
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
원래 피파했었는데 접었다 오니까 스텟 인플레가 너무 심해서 걍 접음 롤은 초반에...
-
아까 어떤 친절한 분이 알려줌 요번주에 할 수도 있고 다음주에 할 수도 있고
-
ㅈㅂ
-
언더마이카 0
내 차 밑에
-
옛날엔 꿈도 잘 안꾸고 어떤소리에도 잘 안깼는데 요즘은 꿈 자주꾸고 알람소리나...
-
서울대 질문 2
서울대 신입생시험이 2월 초에 있는 걸로 아는데, 그러면 정시 추가합격자들은 해당...
-
28, 29가 숏컷, 서바 단골 소재긴 했음
-
요네나할까 3
롤하고싶다
-
몸이 쇠약해요 1
공부를 못하게써요
-
말은 저렇게해도 보통 저런 사람들은 성욕 높거나 외로움 잘타는 성격이죠?? 진짜...
-
이거 하다보면 점점 나아지나요
-
상상 2차 붙음 1
몇 명 뽑은 건진 모르겠지만 기쁘네요 ㅎㅎ 근데 이거 몇시간 하는건지, 얼마 주는...
-
물1 실모랑 N제 16
거의 그 실모 기준 1등급 나올 정도 돼야 지금 수능 1 뜨는거임?? 진짜...
-
조발 하기는 할까요..
-
결과물 나옴 1
더 돌려봐야지~
-
과외준비하려 다시 풀어보는데 21,22 28~30 존나어렵고 빡빡하네 미적으로 이게...
-
메디컬말고 일반과도 과외 많이하나요?
-
반박은 안 받음
-
점공계산기 0
이렇게 되는데 왜이러는거에요? 이화 심찬우 고려 연세 연고 중앙 중대 발표 조기
-
과학은 여기에서 완자로 진도 나가는데 퇴원하고서는 완자 물 화는 다 끝나있을듯...
-
취향 조사 9
ㄱㄱ
-
나도 윤서인 작가님 와이프 같은 여자랑 결혼하고 싶음 7
애국보수+씹덕 ㄹㅇ 내 이상형임
-
노추+척아이롤+미림+마늘+생강+치킨스톡+페페론치노 해서 물붓고 전자렌지 10분 돌리는중 15
듣도보도못한요리가 나올것임
-
거액 받고 해외 블랙요원들 신상정보 中에 통째로 넘긴 정보사 군무원 무기징역 구형 4
수년 간 정보사령부 소속 해외 블랙 요원들의 신상 정보 등을 중국 첩보기관 등에...
-
저 649.7인데 추추추추합으로 될까요?
-
약수 목표로 최저학점 반수 예정입니다 작년 물1 지1 응시했는데 약대 수의대가...
-
부모님끼리 친하셔서 아주 어릴 때부터 알고지낸 친한 동생의 알몸 or 속옷차림을...
-
尹 체포 전 "2년반 더 해 뭐하나, 차라리 들어가는 게 편하다" 0
윤석열 대통령이 고위공직자범죄수사처에 체포되기 전 “나라가 종북 좌파들로 가득차...
-
ㄹㅇ 나도 네이비즘 보고 정확히 누른것같은데 어케 당첨이 안되는거지 다 어둠의 담요단인가
-
냥대떨어지면 2
성한서 지지함
-
가 왜 0일까요..
-
이제야 시대 라이브 들어볼까하는데 삼수를 하고도 물리 개빡통이라 고민이네요 개념이...
-
여기서의 좋다 나쁘다는 실력을 의미 하...저도 알고 싶지 않았는데 한 동네병원이 알려줌뇨
-
방금 맥 업데이트했는데 이제 폰 알림도 여기서 뜨고 미러링까지 되네
-
재수땐 좀 올해끝내야한다는 마음가짐때문에 이악물고 절대ㅜ안미루고 공부했었는데...
-
점공 허위일리는 없고 그냥 귀찮은건가 미지원점공 안보나보네
-
나같은놈 있음? 진짜 차이 개나는학굔데 정작 낮은곳 칸수가 더 안나오는
-
죄다 책임은 안지고 권리만 누리려고 하는거같음
-
목 왜케 아프지
등급컷 ㅇㄷ?
등급컷은 메가나 대성이 잘 예측할 듯 해서 ㅎㅎ
미적분 28번 문항 오류있습니다. x<0 일때 넓이 하나당 1이 맞습니다.
아이고 오타 났네요. 감사합니다.
개인적으로 미분가능에 대한 언급도 포함해주시면 좋을것 같아요. 왜 a의 후보들이 n/4파이 꼴인지에 대해서요.
추후 배포되는 지면 해설지에는 잘 적어두겠습니다. 감사합니다!
n/4네요 ㅎㅎ 올리시느라 고생하십니다 ㅎㅎ
비주얼은 쉬워보이는데 딴딴한 실압근 같은 느낌이었어요 ㅎㅎ 수고 많으셨습니다.
13번 y=-b 대칭이 무슨뜻인가요?
예를 들어 f(x)를 y=a에 대칭시킨 식은 2a-f(x)입니다.
문제 상황에서는 y=-b에 대칭시켰다는게 바로 나오죠
(1/9+2/9)^2하는 이유를 모르겠어요. A에서 두개+B에서 두개+ A에서 한개 B에서 한개 해서 (1/9)^2+ (2/9)^2 + (1/9×2/9) 이렇게 나와서요
X_1=2, X_2=2 는 또 아래 2케이스가 있어요
(1) 처음에 3의 배수 나오고 두번째 3의 배수 아님
(2) 처음에 3의 배수 아니고 두번째 3의 배수임
3의 배수 나오고 A에서 뽑고 또 3의 배수 나와서 A에서 뽑고 3의배수 안나와서 B에서 뽑고 또 B에서 뽑는 방봅도 있지 않나요?
넵넵.
그래서 X_1=2 확률이 1/9+2/9 이고
X_2=2 확률이 1/9+2/9 이여서
저럴게 제곱식 써진거예요