책참 [1020565] · MS 2020 (수정됨) · 쪽지

2023-10-03 11:11:27
조회수 15,644

작수 22번 출제의도는 그래프 풀이 (오피셜)

게시글 주소: https://old.orbi.kr/00064608213

(151.6K) [791]

19 수능 출제의도.pdf

(117.9K) [593]

20 수능 출제의도.pdf

(173.3K) [566]

21 수능 출제의도.pdf

(141.9K) [766]

22 수능 출제의도.pdf

(141.7K) [1343]

23 수능 출제의도.pdf

평가원 공식 홈페이지를 돌아다니다가


https://www.suneung.re.kr/main.do?s=suneung



수능 교육과정 근거 (이하 출제의도) 를 공식적으로 밝히고 있었다는 것을 이제 발견했네요!!





이 문제, 직관이 좋지 않거나 저처럼 머리가 잘 굴러가지 않는 분들을 위해





이렇게 직접 g(x) 식을 작성해 (나) 조건 적용하고 (다) 조건 마저 써서 답 내는 풀이를 권해드리곤 했었는데





평가원에서 공식적으로 '그래프'와 '평균값 정리'라는 워딩을 박아버려서... 여기에 초점을 둔 풀이를 우선적으로 강조하는 것이 적절하겠다는 생각이 들었습니다.


물론 '근거'일 뿐 다른 풀이를 제한하거나 지양하지 않기 때문에 (공식 해설이 없는 점 등에 근거) 다양한 풀이를 익혀두는 것이 좋겠다만


2019학년도 이후의 수능 시험지들은 평가원 공식 출제의도에 맞추어 공부하는 것이 학습에 도움이 될 수 있겠습니다!


이전 자료들은 없는 것인지 내린 것인지 못 찾겠습니다, 그럼 연휴 마지막 날 다들 파이팅하시고 내일부터도 다시 파이팅입니다!!


0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • 21221 받고싶은 인생망한 문과수생 · 1237980 · 23/10/03 11:14 · MS 2023

    페이지가 없다는데요..? ㅜㅜ

  • 책참 · 1020565 · 23/10/03 11:17 · MS 2020

    https://www.suneung.re.kr/main.do?s=suneung

    들어가셔서 알림마당 > 공지사항 > 검색어에 '근거' 입력하시면 확인하실 수 있습니다! url 자체를 클릭하여 들어가는 것은 인위적으로 막아둔 것인지 아님 오류인 듯하네요

  • 21221 받고싶은 인생망한 문과수생 · 1237980 · 23/10/03 17:38 · MS 2023

    감사합니다!
  • 권남몬 · 890651 · 23/10/03 20:43 · MS 2019
  • Achie$ · 1055067 · 23/10/03 11:42 · MS 2021

    이러면, 그래프 풀이가 엄밀하지 않다던 몇몇 강사분들은...

  • 리얼리스트 · 768694 · 23/10/03 11:48 · MS 2017

    어떤 선생님들이 그렇게 말했는지 귀띔좀
  • 퍼플레인 · 1154164 · 23/10/03 12:53 · MS 2022

    정병훈

  • 리얼리스트 · 768694 · 23/10/03 13:01 · MS 2017

    그분이야 뭐.. 예전부터 다양한 풀이 지향하신분 아닌가요?
  • 퍼플레인 · 1154164 · 23/10/03 22:30 · MS 2022

    좋아요 노무 많네
    병훈쌤 싫어하는거 아닙니다 ㅋㅋ
    22번 수식풀이도 열심히 봤어요

  • 책참 · 1020565 · 23/10/03 11:51 · MS 2020

    그러한 말씀을 하셨던 강사 님들께서는 어떤 풀이를 지향하셨는지도 궁금하네요!

  • ㅇㅅㄷㅎㄲㅊ · 979673 · 23/10/04 22:31 · MS 2020

    이제 평가원 자료 출제진이 쓰는거 아니라 의미없다도르 시전할예정 ㅋㅋ

  • 민족고대컷 · 1241577 · 23/10/03 12:07 · MS 2023

    전부 꽁꽁 숨기는줄 알았는데 교육과정 이수기준에 대한 부분만 맞춰서 알려주긴 하는군요 ㅋㅋㅋㅋㅋ..

  • 책참 · 1020565 · 23/10/03 12:36 · MS 2020

    저도 문항만 출제하고 해설이나 출제 방향 등은 따로 공개하지 않는 것으로... 가끔 가다가 이전 기출 문항 갖고 수능 소개 자료에 소개할 때 조금씩 드러내는 것 외에는 이렇다 할 것이 없다고 알고 있었는데 저렇게 명시된 공식 자료를 확인하니 새롭고 좋네요! 참고하여 문항들 다시 분석해봐야겠습니다

  • 잠실의 주인 · 1066543 · 23/10/03 12:28 · MS 2021

    첨 알았네요

  • 책참 · 1020565 · 23/10/03 12:37 · MS 2020

    저도 오늘 알았습니다! 참고하기 좋다고 생각해요

  • 리얼리스트 · 768694 · 23/10/03 13:02 · MS 2017

    근데 뭐 수험생 입장에서야 의도따윈 중요하지 않은듯 걍 어떻게해서든 때려잡아서 맞추면 되니
  • 책참 · 1020565 · 23/10/03 15:27 · MS 2020

    주어진 문항이 어떻게 만들어졌는지, 왜 만들어졌는지를 이해하는 것이 문항을 어떻게 해결해야하는지 깨닫는 데에 큰 도움이 된다고 생각하고 있습니다. 그래서 수험생일수록 문제의 의도를 파악함과 동시에 다양한 풀이를 지향하는 태도를 함께 지닐 필요가 있다고 생각합니다.

    물론 현장에서는 어떻게 해서든 답만 맞추면 그만이긴 합니다 ㅋㅋㅋㅋㅋ

  • axia9999 · 1027342 · 23/10/03 19:42 · MS 2020

    이해못한 통통이들은 확추...

  • 책참 · 1020565 · 23/10/03 20:46 · MS 2020

    그래프, 평균값 정리 적용하는 풀이는 유튜브에 시각적으로 이해하기 편한 영상들이 많습니다! 수식 풀이는 (다) 조건에 f(0)=-3 이용하여 f(x)=x^3+ax^2+bx-3 (a, b는 실수) 정도로 설정하고 (가) 조건을 [f(x)-f(1)]/(x-1)=f'( g(x) )로 정리하여 다 대입해보시면 됩니다.

    (혹시나 글 이해 못하신 학생 분들을 위해 댓글 빌려 남깁니다)

  • 현우진의 검 · 1211214 · 23/10/03 19:49 · MS 2023

    어허 호형훈제를 음해하려는 평가원의 계략이다

  • 책참 · 1020565 · 23/10/03 20:46 · MS 2020

    정병훈T 해설 제가 사랑합니다... 1711가30이나 221114 수식 풀이 보고 사랑에 빠져버렸습니다

  • 변신모티프 · 1189022 · 23/10/03 19:56 · MS 2022

    그래프 풀이랑 식풀이랑 걸리는 시간이 다르긴 하더라고요

  • 책참 · 1020565 · 23/10/03 20:48 · MS 2020

    그래프 풀이 지향이 맞다고 생각합니다!! 다만 현장에서 그래프 그려 상황을 파악하기 어려운... 저와 같은 수험생 분들께는 수식 풀이도 권해드리고 있습니다. 1711나30, 221112, 2406미28 등을 수식 풀이로 밀어버리는 훈련으로 다루어두면

    231122도 수식 풀이로 밀 때 현장에서 더 빠르게 풀렸을 것이라고도 생각합니다

  • 승룡887 · 1103087 · 23/10/03 20:01 · MS 2021

    오 이거 참고하기 좋다!

  • 책참 · 1020565 · 23/10/03 20:48 · MS 2020

    그쵸! 22, 23 수능 정도라도 참고하여 학습해두면 24 수능 대비에 도움 될 것이라고 생각하고 있습니다

  • 무조건한방에 · 1073594 · 23/10/03 22:34 · MS 2021

    문제결과물이 어찌되었든간에 출제의도는 그래프해석이었다~..

  • cb · 1200552 · 23/10/03 22:38 · MS 2022

    이거지 ㅋㅋㅋㅋ

  • 특기가한국어 · 1139035 · 23/10/03 22:47 · MS 2022

    평가원 학습방법 안내에 가능한 선에서 최대한 해설 하더라구요

    출제 근거에 함수의 그래프의 개형을 그릴 수 있다, 함수에대한 평균값 정리를 이해한다

    (가),(나) 조건에서 f(x)와 g(x)의 관계를 파악할 수 있고 (다)조건에서 조건을 만족하는 함수 f(x)를 구할 수 있다라고 해설

  • 책참 · 1020565 · 23/10/03 23:28 · MS 2020

    평가원 공식 홈페이지 자료마당>수험자료에 나와있는 '2024학년도 대학수학능력시험 학습 방법 안내' 76페이지 부분 말씀해주신 것이죠? 함께 살펴보면 학습에 도움 될 것이라 생각 들더라구요

  • 특기가한국어 · 1139035 · 23/10/03 22:50 · MS 2022

    그리고 개인적으로 f(x)의 정체가 y= (x-2)³+5라는 매우 간단한 함수라는 점도 의도적으로 이렇게 한걸까? 생각하는데

    접선에 대한 차이함수로만 계산하는 것과 함수 f(x)를 구하는데서 계산 난이도의 차이가 극명하게 생기는 듯하네요

  • 책참 · 1020565 · 23/10/03 23:31 · MS 2020

    파일 속 출제 의도에 맞는 정석 풀이는 f(x)-(px+q)=(x-1)(x-5/2)^2로 두고 (가) 조건으로부터 f'(1)=f'(g(1)) 얻어 g(1)=3 확인하고 (다) 조건에서 f(0)=-3과 f(3)=6 통해 p, q값 결정하는 것이 아닌가 생각하고 있습니다!

    예시로 그래프 그려 상황 파악할 때 주로 f가 서로 다른 두 극값을 지니는 상황을 생각했을텐데 실제 결과는 어떤 상수함수에 삼중근 가지며 접하는 형태라 신기했어요

  • fififuuddyhxj · 968204 · 23/10/03 22:51 · MS 2020
    회원에 의해 삭제된 댓글입니다.
  • zzzzl · 998202 · 23/10/03 23:26 · MS 2020

    정병호는 저런거 순진하게 정말 교수가 쓸거라고 생각하냐고 어차피 부하직원 잘 모르는 사람들이 여기 단원이 이거니까 이거 쓰는거라고 대충 단원명만 알려주는거라던데

  • 책참 · 1020565 · 23/10/03 23:29 · MS 2020

    정병호 선생님께서 그렇게 말씀해주셨었군요! 알려주셔서 감사드립니다. 그래도 '그래프'와 '평균값 정리'라는 워딩이 '합성방정식'이나 '합성함수' 해석 대신에 들어와있다는 점이 의미 있다고 저는 느꼈습니다

  • 특기가한국어 · 1139035 · 23/10/04 02:32 · MS 2022

    평가원 교수님들이 쓸 가능성이 높은게 오류시비 생길때 대비해서 분명 저런 자료들 작성하는 것으로 알고 있습니다. 정리는 실무자가 한다고 해도 말이죠...
    미궁의 문 사건 이후에 출제 하신 분이 직접 가서 출제 의도와 근거 같은것들 정리해서 올린게 시초로 아는데

  • zzzzl · 998202 · 23/10/04 12:22 · MS 2020

    그건 정병호 qna가서 달아보시는게

  • 소코아 · 1081849 · 23/10/03 23:31 · MS 2021

    ???: 진짜로 교수가 쓴거면 그 교수가 실력이 없는것

  • 특기가한국어 · 1139035 · 23/10/04 02:33 · MS 2022

    강사하실기 아니고 교수 하셨어야 됐네요 ㅋㅋㅋㅋ

  • 두공두공핵물리학부 · 1246452 · 23/10/03 23:44 · MS 2023
  • 텐중 · 737565 · 23/10/04 00:08 · MS 2017

    2019학년도부터 공개하기 시작했어요

  • 책참 · 1020565 · 23/10/04 00:58 · MS 2020

    알려주셔서 감사드립니다, 어떤 계기가 있었다면 무엇이었을지 궁금하네요

  • 책참 · 1020565 · 23/10/04 01:01 · MS 2020

    감사드립니다!! 지진 연기가 18수능이었군요... 교육과정 외 출제 논란을 줄이기 위한 명시가 목적이었군요