수학 질문
게시글 주소: https://old.orbi.kr/00064710921
저게 왜 (2,3) 점대칭이 되나요 미분하면 f(2+t)-f(2-t)=6 이 되는데 f(2+t)+f(2-t)=6 이되야 (2,3) 점대칭 아닌가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
선예매도 실패하고 돈도 없네
-
2년전인가? 그때 3만원이였는데 오늘 살까 하고 들어가보니까 7.7만원이네 ㄷㄷ 뭔...
-
그나마 돈없어도 그쪽이 탈조선 용이함 돈있으면 바로 미국가지 지금 돈있고 권력있는...
-
제발…
-
내신 5점대 중반이고 모고는 공부 안 하고 대충 봤을 때 4등급대 나오는데 1년...
-
요즘 아틸라 토탈워 사서 1212모드(중세시대) 하고 있는데 꿀잼임. 2주일째...
-
젖같다 ㅅㅂ 가정체험도 못쓴다는데 떨어지면 졸업식 오기 전에 자살
-
아 0
편의점 알바 연락 없는거 보니까 채용 안된듯
-
한번가면 현타 개많이올거같은데 피파 현질도 그렇게 현타가 오던데
-
미국 가서 서울대 학벌 vs 영국 옥스토비, 캠브릿지 학벌 어떻게 생각함? ㅋㅋ 5
미국에서 작년부터 한국 도청사건 2023 뜨고, 올해부터 반도체 관련 법으로...
-
급식딱충들이 뭔 돈이 있어서
-
주소를 왜 정확하게 적으라는거임
-
크 갓곡
-
진짜 암것도 안하고 출석하기 + 중간,기말고사 딱시험전날만 공부하기로 3.5 받음...
-
ㅋㅋㅋㅋㅋㅋㅋ 4
ㅅ ㅂ ㄹ ㅁ 는 금지어인데 씨발롬아는 금지어 아닌게 ㅈㄴ 웃기네 ㅋㅋㅋㅋㅋ
-
목공강 만드시나요?
-
과탐 선택이 생지가 아니라면
-
시발점 볼륨 ㅈㄴ큰데….. 25분 1~19까지 15틀인데 시발점……..
-
23수능때 만점자가 3명이었는데…ㅠㅠ
-
근데 ㄹㅇ 25수능보다 제가 친 고1 3모가 더 어려운듯 0
"1컷 76점" 이거 3받고 ㄹㅇ 충격먹음
-
여캐일러 투척 10
1일차(?)
-
얼버기 6
안녕하세요
-
오늘 공부한거 사진은 아니더라도 오픈카톡에 기록하기 이런거히면 좀 좋을거같아서...
-
증거물이 여기 있는데
-
안인데 추움 1
이게 겨울...?
-
서성한중은 몰라도 서연중은 뭔ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
정시는 아니고 수시에요 적당히 서울대 중간공정도 붙을 성적은 나오는데 전기컴공은...
-
올해 개념완성/실전문제풀이 교재 내년어 그대로 써도 된다고봄? 개정 많이 되는편인가
-
ㅇㅇ고딩도 갈 수 있음 그래도 너무 어려보이면 안댐 상식적으로 물론 저는 업소 안갑니다
-
학식 가격 1
부모님이랑 용돈 얘기 중인데요 기본적인 교통비, 식비만 받으려고 해서요...
-
수시 망해서 정시로 가야할듯 한데 혼자 진학사 텔그 등등 보고 쓰는거랑 컨설팅이랑...
-
두근두근 서울여행
-
3362개 생각보다 적네
-
그 많은 오르비언중에 나만 팔로우한 이유가 뭐임? 한둘이 아니네
-
수가생1지1 20수능 36557>21수능 12112
-
잘보고 입시판 완전히 뜨는거 확정이면 시원하게 그냥 다 버려버릴텐데 그것도 아니면...
-
맞팔 분들은 해당안됨;;; 26시즌 옯망주 발굴ON
-
오답 vs 정답 0
[문제] [오답] [정답] 인생에 정답은 없는게 아니라 사실 사람들은 원래 정답보다...
-
177/917 이라... 바로아는사람들신기함
-
씨발롬아그때나랑썸탔잖아!!!!!!!!
-
이렇게 처음에 시작했었다가 거세게 붉어졌던거 같은데 과거에도...
-
그럼 죽어
-
덕분에 미련 사악 버린다ㄱㅅ요
-
항상 1등급만 받아왔는데 지인 분께 하위권 학생 과외가 들어왔어요 심지어 고2.....
-
얼버기 2
다들 기분좋은 불금 보내요
-
두고봐 네가 이기나 내가 이기나 해보자
미분하면 플러스로나오네용
왜 플러스로 나오는지 모르겠어요 ㅠㅠ
수2아니라 미적분맞죠??
수2인데 저거 처음 봐서요;;
엥 수2에요..?
f(-x)라는 함수가 있다고 가정하면,
이걸 미분하면 -f'(-x)가돼요
근데 이거 미적분에서 배우는걸로 아는데..
수2 n제 문제인데 처음 봐서;;
점대칭 함수 적분하면 구간길이 곱하기 대칭점높이라
구간길이 2t 곱하기 3 해서 6t라서 3이 대칭점 높이가 되는거같아요
근데 문제에 적혀있는걸로만 봐선 2가 점대칭의 중점인지 알수가 없지 않나요?ㅠㅠ 그래도 점대칭 중점이 x=2라고 가정하면 도형으로 풀리긴 하네요
F'(x)=f(x)라 하자.
\int_{2-t}^{2+t} f(x)dx 는 미적분학의 기본 정리에 의해 F(2+t)-F(2-t)이다.
주어진 항등식의 양변을 t에 대해 미분하면 부정적분의 정의와 합성함수 미분법에 의해 f(2+t)+f(2-t)=6이 되는데
따라서 함수 f(x)가 점 (2, 3) 대칭임을 확인할 수 있다.
미적분에서 학습하는 합성함수 미분법에 따르면 함수 f(x)가 x=a에서 미분 가능하고 함수 g(x)가 x=f(a)에서 미분 가능할 때, 함수 g(f(x))의 x=a에서의 미분계수는 g'(f(a))*f'(a)입니다. 확장해보면 미분가능한 함수 f(x), g(x)에 대해 함수 g(f(x))의 도함수는 g'(f(x))*f'(x)가 됩니다.
다만 수학2 문항이라면 합성함수 미분법을 적용할 수 없는데.. 적당히 그래프 그려 직관적으로 파악하는 것은 그리 엄밀하지 못한 방식이라는 생각이 들어 어떻게 설명해야할지 현재로선 잘 모르겠습니다.
아… 함성함수 미분을 못쓰는구나…. 그럼어케 설명하지