수열 준킬러 1분 안에 푸는 방법 (2)
게시글 주소: https://old.orbi.kr/00067340401
과연 무조건 첫째항부터 나열하는 것이 항상 좋은 걸까요..?
또한 나열하면서도 시간과 과정을 조금이라도 단축시킬 수는 없을까요..?
등차수열이나 등비수열이 아닌 순수한 수열 문제에서,
모두가 알다시피 ‘일단 나열해놓고 보는 것’이 정말 중요합니다.
하지만, 문제의 방향성을 염두한 채로 나열하다보면 불필요한 시간을 훨씬 줄일 수 있습니다.
올해 6월 모의고사 15번입니다.
이 문제에서 모든 케이스를 구분짓는 핵심적인 요소는 의 부호입니다.
따라서 우리는 이 부호가 어떻게 전개될지에 모든 초점을 맞춰 풀이를 진행해야합니다.
먼저 모든 상황에서
으로 여기까지는 케이스를 나눌 필요가 없어보입니다.
이제 여기서부터 케이스를 나누어야합니다.
이제 k=1부터 k를 1씩 올려가며
등의 부호에 따른 케이스를 나누어보아야합니다.
상당히 번거로운 과정이 될 것 같습니다.
그 전에 풀이를 단축시켜줄 수 있는 규칙성이 있는지 살펴보는 것이 좋을 것 같습니다.
먼저, 과연 모든 항들의 부호가 서로 독립적일까요..?
혹시나 에 숨겨진 규칙이 있는지 살펴봅시다.
위와 같이 식을 변형해보고, 이 세 가지만 놓고
각각의 경우에 어떻게 전개되는지 대략적으로만 살펴봅시다.
만약에 이라면
이므로
입니다.
즉, 음수항 다음 항이 양수항이라면 그 다음 항은 다시 음수항이 됩니다 ... ㄱ
또한,가 전부 음수라면
"어..? 그렇다면.?"
... 이를 통해, 음수항에서 양수항으로 바뀔 때까지
음수항(이후 첫 양수항도 포함)에서 각 항들끼리의 차이는 공차가 2인 등차수열임을 알 수 있습니다 ... ㄴ
마지막으로, 만약 3~6번째 항에서 0이 하나라도 나온다면
이므로 더 살펴볼 필요가 없습니다
... ㄷ
우리는 ㄱ, ㄴ, ㄷ세 가지를 염두한 채로 최대한 빠르게 모든 경우들을 파악해볼겁니다.
k=1일 때,
이므로
성립X (- + + -) (ㄱ 활용)
k=2일 때이므로
성립X (ㄷ 활용)
k=3일 때, 이므로
성립O (- + - -)
k=4일 때, 이므로
성립X (ㄷ 활용)
k=5일 때,이므로
성립O (- - + -) (ㄱ, ㄴ 활용)
k=6일 때, 이므로
성립O (- - - +) (ㄱ, ㄴ 활용)
k=7일 때, 이므로 성립X (- - - -) (ㄴ 활용)
k>7일때도 전부
(- - - -)일 것입니다.
따라서 가능한 k는 3, 5, 6 뿐입니다.
우리는 나열을 하면서도, 몇가지 규칙을 미리 염두해두어 케이스를 나열하는 시간을 줄이는데 성공했습니다.
한 문제만 더 살펴봅시다. 2023년도 수능 15번입니다.
이 문제에서는, 모든 케이스를 구분짓는 핵심적인 요소는
이 3의 배수인지 아닌지의 여부입니다.
먼저, (가)를 보고
은 3의 배수가 아니기에
일 것이라고 먼저 확정해야합니다.
(나)를 본 뒤,
이미 모두가 알고 있는 ‘일단 넣고 보자’ 식으로
먼저 대입을 해봐야 합니다.
그러나, 만약을 시작으로 전개를 하려고 하면,
너무 많은 경우의 수가 나옵니다.
그래서 보통 해설을 보면 통상적으로부터 역추적하는 방법을 사용하곤 합니다.
그러나, 현장에서 이 문제를 직면했을 때 부터 역추적하는 것은 상당히 리스크가 있습니다.
어디까지 역추적해야 문제가 끝날지
해보기 전까지는 모르기 때문입니다.
(물론 결론적으로는 5번째 항까지만 살펴보아도 답이 나오도록 문제가 설계되었지만,
저의 경우 문제를 처음 현장에서 직면했을 때 역추적이 언제 끝날지 모르는 불확실성을 회피하고자 아래와 같은 방법을 사용했습니다.)
그렇다면 우리는 어디를 시작으로 전개해보아야 할까요?
모릅니다.
무슨 소리냐고요?
우리는 어느 항들이 3의 배수를 가지는지조차 모르고,
안다고 한들 그 항에 3분의 1을 곱했을 때 또 다시 3의 배수가 나올지 아닐지조차 모릅니다.
그래서 우리는,
3의 배수이면서, 1/3을 곱했을 때 더 이상 3의 배수가 아니게 되는 어떤 항을
k번째 항이라고 가정해놓고,
라고 설정한 뒤 거기서부터 나열해보는겁니다.
이렇게 설정해놓은 뒤 라고 하면, 문제없이 1~k번째 항은 자연수가 되므로 ‘모든 항이 자연수인가?’에 대해서도 걱정할 필요가 없습니다.
이제 에서부터 전개해보면
... 5항 주기로 반복됨을 알 수 있습니다.
이므로, 40이 1, 4, 5의 배수임을 고려해보면
또는
또는
을 만족할 것입니다.
k=4일 때,
그러므로
k=5일 때,
그러므로
k=6일 때,
그러므로
따라서의 최댓값과 최솟값의 합은 224입니다.
순수한 귀납적 추론을 요구하는 수열 문제에서
‘나열하면서 규칙 확인해보기’는 필수입니다.
그러나, 단순히 아무 생각없이 나열하는 것 보다는
상황에 따라 어떤 식으로 흘러갈지 대략적으로 추측해보고,
부호 / 3의 배수 여부 등 문제의 상황을 가르는 핵심 요소에 집중하여 이와 관련된 성질을 미리 파악하고
나열을 시작하면 훨씬 문제를 푸는 과정과 시간이 단축됩니다.
그렇다고 해서, 귀납적 추론을 요구하는 문제에서 ‘규칙을 반드시 찾고야 말겠어’라는 생각으로,
나열을 하지도 않은 채 모든 규칙을 찾아내려고 무모하게 시도하는 것은 오히려 시간 낭비일 수 있으므로
귀납적 추론을 베이스로 깔고 가되, 언제나 문제의 방향성을 염두해 둔 채로 수열 문제에 접근했으면 좋겠습니다.
현재 저희 Team BLANK의 기출문제집 제작이 70% 이상 완성되었습니다.
저희는 기출문제집은 엄밀한 논증 또는 해설지다운 해설보다,
직관을 사용하여 최대한 간결하고 깔끔하게 문제를 해결할 수 있는
해설을 여러분들께 제공합니다.
많은 관심 부탁드립니다 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
찍기특강 저격 0
작년에 영어 홀수형이 찍기특강을 저격해서 냈다고 하던데 그러면 올해부터 거의...
-
왜 봇치 빙의하는 사람 많은지 모르겠음 인스타 하다보면 끼워팔기로...
-
24수능 본게 엊그제 같은데 벌써 25수능이 16일 남았다고?
-
수능 등급컷 특 2
바라고 기원하는 등급컷 +3이상임
-
좋아요를 눌러 다른 사람도 당하게 하자
-
수능 신분증 1
민증 잃어버려서 여권 갖고가려고 하는데 신분증 바닥에 던져두고 시험봐도 되너요??...
-
돌아갈 곳이 없다 수능대박만이 살길이다
-
적고있었는데 글삭됨
-
사고다사고
-
나하고 사귈땐 교회 싫어한다고 말하던데 뭐징... 심지어 나 기독교인인데도 앞에서...
-
그렇게 하는 거 아니라고
-
작년에 충분히 수학 잘했는데도 샤인미n제 하이엔드에서는 무참히 썰렸던 기억이 있는데...
-
수능도 안보는데 39000원 내기가 싫어서 중고로 구해서 봐야지,,,
-
올해 읽은 글: 6평+사피엔스 2/3 분량 ㅋㅋㅋ
-
파이널 김종익 모의고사 6회 15번 해설에는 싱어는 세계의 모든 가난한 사람을...
-
어떻게 무정에서 영채하고 선형을 동시에 홀리겠냐
-
지금 이 시점에 가장 효율적인 독서 연계 공부는 뭘까요 1
Ebs 수특만 1/3정도 풀긴했는데 한달전이라 잘 기억안남 어케해야됨요
-
천재 친구 썰 2
연대 붙고 일본 도쿄공업대 진학한 과학고 동기 도쿄공업대가 일본의 카이스트임 랩실...
-
항상먹고나서후회하는것 맨날 똑같어
-
전형태 언매 파이널 2,3회 2506 비문학 두 지문 진득하게 분석 문학은 이틀동안...
-
이게 올해 연계라서 지금 체감이 잘 안되나. 나는 둘다 비연계로 본 입장이라
-
자취생 집밥 12
구운 참치 주먹밥..맛있음표고버섯 볶음밥…고기파인데 고기가없어도 마싯음대충...
-
현역이고 9모92,10모80입미다
-
고전소설 : 유씨삼대록 고전시가 : 관동별곡 현대소설 : ^비연계^ 현대시 :...
-
고비다고비야 8
등이 두드러기에 잠식당하는중 이거 설마 위험한건가
-
안햇는데…지금이라도 해야할까용 대충 수특 레벨3랑 수완 실모만 풀면 되려나
-
빤히 쳐다본다는거 ㄹㅇ임?
-
꽤나 공들여서 만들었음 오르비언 전원 입주 가능할 듯
-
설의 특 6
훈훈한 애는 꽤 많음 귀여운 애들은 많은데 예쁘다 하는 애들은 적고 다들 기본적으로...
-
잠이 안온당 3
질받을 해볼까 할사람이 있을까
-
갑자기 든 생각인데 연애라는게 너무 시간이 아까운 것 같음 13
나는 감정소모도 많이 하고 연애하면 돈도 많이 쓰고.. 연애를 한다면 주에...
-
선 연락 절대 안하고 먼저 놀자고는 커녕 밥먹자고도 절대 먼저 말 못하고 놀자고...
-
12시 반에 시작해서 1회독 마쳤는데 웬만한 건 다 알겠음 전공이랑 갭이 너무너무 큰 것 같아..
-
이야 조땟네
-
제발요 ㅠ 참고로 허수라서 난이도 적당한걸로....(브레턴우즈나 헤겔같은거 제외...)
-
진짜 잘래 12
내일은 진챠 5시에 인난다
-
맞짱깔새끼구함 9
나오셈
-
하루에 day 2개씩 해야도ㅔ네
-
얼마전에 편입학원가서 상담받고 11,12월 단과로 73만원 결제했었는데…그때는 무슨...
-
흠.... 작수보단 열심히하긴했는데 좀 불안하다 ㅋㅋㅌ 작수도 삼이긴했는데 올해는...
-
하루에 순수 오락만 8시간 하는 듯
-
중고딩때 가장 중요한 과목은 국어도 영어도 수학도 아닌 듯 25
'진로' <- 이 시간에 진지하게 고민 안하고 놀기만 했으면 안됐음;;
-
예체능좃같음 4
1/15에끝남
-
16일의 전사 1
지구 현재 사설 40초. 16일의 전사모드로 돌입해서 수능 1ㄱㄴ?
-
수능 끝나면 할거 13
음악 작업 해볼거임 흐흐
-
김승모 좋음? 7
강평이고 이감만 풀어서 딴 실모 사고 싶은데 상상 패키지는 다 못풀거 같아서...
-
존나 잘생기고 몸좋고 능력있고 싶다 씨바아 ㄹㄹㄹ

수열 꿀팁 개추기출문제집 정말 기대가 되는군요
헉

바로구매할게요8개년 평가원기출을 수록한다 하셨는데, 선별문제들인가요?
아님 8개년 평가원 준킬러,킬러를 다 포함하신 문제집인가요?
빨리 나왔으면..ㅠㅜ