[칼럼]수학성적은 갑자기 오른다. 백분위78->99의대
게시글 주소: https://old.orbi.kr/00068492023
안녕하세요. 저는 수학 현역3->재수1로 한의대에 입학한 후, 높은1로 올려서 의대로 옮긴 케이스입니다.
수험생활동안 경험한 2번의 수학성적의 계단식 상승에 대해 얘기해보려합니다.
수능 수학성적은 차근차근 꾸준히 오를까요?
아닙니다. 모든 수험생들은 필연적으로 정체구간을 맞이하게 됩니다.
(물론 처음 입문해서 개념과 기출을 풀어볼때는 성적이 당연히 오릅니다.)
이때 시간은 꾸준히 투자하는데, 성적은 안 오르고, 맞게 하고 있는지 감이 안 잡혀 답답해집니다.
실력은 오른거 같은데도 성적은 안올라 고민이 되기도 하구요.
그런데 이 구간을 돌파하면 계단식으로 성적이 갑자기 팍 오르게 됩니다.
신기하게도 불과 얼마전과 달리 문제를 풀 때 시야가 넓어지고 사고가 간결해지는 느낌을 받습니다.
오늘은 이 정체구간을 돌파하기 위해 제가 했던 '두가지'에 대해 얘기해보려합니다.
(제가 생각하는 수능성적 그래프를 러프하게 그려보았습니다.)
1) 필연적 사고를 학습하고 체화해라
수학 문제의 조건과 단서들에는 논리적인 인과관계가 있고 그에 따라 거쳐야하는 풀이의 단계가 있습니다.
쉬운 문제는 A-B, 어려운 문제는 A-B-C-D.. 처럼 난이도가 높을수록 그 단계가 복잡하겠죠.
그렇기 때문에 특정 조건을 보면서 마땅히 떠올리고 전개해야 하는 사고과정이 있습니다.
수능수학 수준에서 수험생이 마땅히 해야하는 사고를 ‘필연적 사고’라고 하겠습니다.
Ex) ‘최댓값, 최솟값 조건에 주목하자.’, ‘부등호에서 =이 되는 지점에 주목하자’, ‘원의 중심에서 현으로 수직이등분선을 긋자’, ‘도형에서 평행선이 나오면 동위각, 엇각등을 확인하자’, ‘원에서 원주각과 중심각의 관계를 생각하자’ 등등 엄청 많이 있겠죠.
필연적 사고를 염두하고 공부하는 사람과 문제를 아무 생각 없이 기계적으로 푸는 사람은 큰 차이가 나게 됩니다.
이것들은 이제는 많은 강사들이 강조하고 가르치는 부분입니다.
이 ‘필연적 사고’들을 학습하고 그에 해당하는 문제들을 풀며 체화하는 것이 중요합니다.
처음 공부를 할 때는 이 사고 자체를 어느정도 외우며 공부하는 것도 괜찮습니다.
그러나 강의를 들을때, 해설지를 볼때는 이해되지만 나중에 직접 풀 때는 막히는 경우들이 꽤 있습니다.
이는 강사나 해설은 문제의 인과관계의 모든 부분을 짚어줄 수 없기 때문입니다.
여기에는 직관이 포함되어서일 수도 있고 시간때문에 생략이 될 수도 있겠죠.
그렇기때문에 개인마다 애매하면서 답답한 지점을 경험 해봤을것입니다.
그리고 이 답답한 지점은 자신의 약점부분이기 때문에 넘어가면 이후에도 반복될 확률이 높습니다.
그럼 이 부분은 어떻게 해결해야 할까요?
2) 항상 의문을 가지기
먼저, 문제를 풀 때 어떤 단계에서 자신이 막혔는지를 파악해야합니다.
그리고 단순히 ‘이건 이렇게 해야하는구나’로 끝내면 안됩니다.
‘왜 난 이렇게 못했는지, 또 다음에는 어떻게 해야 할 수 있는지’를 고민해야합니다.
이를 통해 ‘1.필연적사고’를 확장해 개인마다의 빈틈을 채워야합니다.
많은 사람들이 문제를 풀어내는 핵심적인 아이디어에만 집중하는 경향이 있는데
정작 자기가 거기까지 도달하지 못한 이유에 대해서는 생각해보지 않습니다.
그러나 수능시험장에서는 막히는 부분이 생길 때 아무도 도와주지 않고 혼자 돌파해야 합니다.
다소 추상적이기 때문에 예시를 들어보겠습니다.
예시1) 6월모의평가 공통21번
목표: 문제의 해설X (다른 다양한 해설이 있을 수 있음)
1.필연적사고 2.의문 가지기의 예시를 위해서 O
1.부등호에서 =인 지점, 최댓값/최솟값에 주목하자. (필연적 사고)
문제의 (가), (나) 조건에서 매우 특징적인 조건들을 줍니다.
->만약 (나)조건으로 몇 개의 개형들을 소거하지 못했다면?
->’ f(x)=k일 때 원소의 개수’라는 조건 자체를 이해하지 못해서인지 or ‘3개이상’일 때 3개에 주목하지 못하고 머리가 복잡해져서인지 등등 자기가 왜 못했는지를 생각해봅니다.
-> 임의의 k선을 그었을 때 사차함수 그래프의 개형마다 만나는 개수가 다르구나. 이를 통해서 그래프의 개형들을 소거할 수 있구나.
‘부등호에서 =인 지점, 최댓값/최솟값에 주목하자’에서 ‘사차함수에서 =인 지점, 최댓값, 최솟값은 개형을 소거하고 특정해나갈 때 중요하니 주목하자’등으로 확장할 수 있겠죠.
-> ‘다른문제에서는 3이상이 아닌 다른 숫자를 주거나, k의 값이 아닌 x값을 제시할 수도있겠다.’ 그럼 어떻게 해야할지 등의 생각까지 해보면 더 좋겠죠.
2. 개형 특정하기
남은 케이스중에 문제에서 제시된 x=0,1,2에서의 조건을 통해 개형을 특정합니다.
->못했다면? 개형 세가지를 떠올리지 못해서인지/ 떠올렸는데 1,3번을 소거를 못해서인지/ f(0)=0을 활용하지 못해서인지등등.. 어느과정에서 자기가 막혔는지를 생각합니다.
->만약 f(0)=0을 활용하지 못했다면 이유를 생각해보고 제시된 최솟값인 8/3과 비교를 해서 활용하면 편하구나.
->다음에는 제시된 값들을 비교해서 개형을 확정하고 소거할수도 있겠다는 생각을 할 수 있겠죠.
예시2) 5월모의평가 공통21번
1.원의 중심에서 현까지 수직 이등분선을 긋는다. (필연적 사고)
그런데 현AC, CD 두종류가 있는데 현AC에 그어야 하는 이유가 뭐죠?
현AC의 길이가 제시되어있기 때문에 각도 알파에 대한 sin, cos값을 알수 있어서 긋는겁니다.
현CD는 길이가 제시되어있지 않기 때문에 일단 패스합니다.
->현AC에 바로 수직 이등분선을 긋지 못했다면? 의문을 가져 그 이유를 생각해보고
->’길이정보가 있는 현에 수직 이등분선을 먼저 긋자’로 ‘필연적사고’를 확장해보는것이죠.
2.도형에서 평행선이 있을 때 동위각, 엇각을 생각한다. (필연적 사고)
평행인 조건을 이용해 각CED를 알파로 표시합니다.
->못했다면? “평행한 조건을 인지하지 못해서인가? 또는 ‘평행한 조건을 보고도 아무생각이 안 들어서인가?’ 등 의문을 가져봅니다.
->삼각형CED가 외접원의 반지름길이도 제시된 중요한 삼각형이므로
->’중요한 삼각형과 연관된 평행조건이 있으면 동위각, 엇각등을 확인해 각을 표시해본다’ 로 1.필연적사고를 확장해봅니다.
3. ‘외접원의 반지름’을 제시했으므로 사인법칙을 쓸 수 있나 확인한다. (필연적 사고)
삼각형CED에서 외접원의 반지름의 길이, 각CED의 sin값을 이용해 CD의 길이를 구합니다.
->못했다면? 사인법칙의 정의를 잘 몰라서인가? 사인법칙은 알지만 외접원의 반지름을 보고 떠올릴정도로 공부가 덜 되어서인가? 등을 생각합니다.
4. 원의 중심으로부터 수직 이등분선을 긋는다. (필연적 사고)
처음 1번단계에서 CD의 길이를 몰라서 수직이등분선을 긋지 못했던 것을 그어줍니다.
5. 원주각과 중심각의 관계를 이용한다. (필연적 사고)
각COD와 각CAD의 관계를 확인해 각CAD를 각베타로 표시합니다.
못했다면? ‘원주각과 중심각의 관계 자체에 대한 개념이 없었는지?’, ‘알고 있었는데 적용을 못했는지?’ 등 의문을 가져봅니다.
6. CD, AC의 길이, cos베타를 알기 때문에 코사인법칙을 사용한다.
여기까지 예시였습니다.
-> 위 과정에서 얻은 것들을 반복하며 체화한다.
문제를 꼭 다시 풀고 계산할 필요는 없습니다.
시간 날 때 다시 봐주며 내 사고과정들을 체화하고 익숙하게 하는게 중요합니다.
정리를 잘 하시면 정리를 해도 좋고 아니면 모아놓고 보셔도 좋습니다.
저는 따로 정리를 하는것에 피로감을 느끼는 스타일이여서 하진 않았습니다.
대신 개념서 느낌으로 뉴런을 공부했었는데 해당단원에 위의 과정을 거친 문제 페이지를 찢어서 끼워두거나, 아이패드로 찍어놓고 시간날 때 다시 봤습니다.
요약
1 .꼭 해야할 ‘필연적 사고’를 학습하고 문제를 풀며 체화한다. (강의, 문제집 등을 통해)
2. 이때 못 넘어가고 애매한 지점이 생기면 스스로 ‘의문’을 가지고 왜 못했는지를 고민해 써둔다.
이를 해결하며 ‘필연적 사고’를 확장한다.
->위 과정을 반복하며 시간 날 때 보며 체화하고 익숙하고 당연하게 만든다.
묵묵히 공부하면 어느날 수학성적은 갑자기 오르더라구요.
다들 너무 답답해하거나 불안해하지 않고 공부했으면 좋겠습니다!
0 XDK (+3,100)
-
1,100
-
1,000
-
1,000
-
어문학과는 ㅈㄴ 쫄아서 못하갰음.
-
그럴 생각임
-
화작러라 잘 모름뇨
-
보통 반수하는 애들처럼 6월부터해도 ㄱㅊ음? 1학기 휴학 여부 같이 고민해주고있는데...
-
아으 술냄새
-
작년 경쟁률 8:1이었는데 이거 제가 5명째인거죠?ㅠㅠ 1명 뽑는거라 그런지 너무 불안하네요..
-
국어4등급 피램 0
2024년 수능 국어4등급 나왔고 재수할껀데, 김동욱T 풀커리 타고 혼자서 피램에서...
-
그러면 연대 전체적인 입결이 더 크게 하락해야하는거 아닌가 표본이 없긴 없는데 점수...
-
치피치피 1
차파차파
-
사실 이미 써서 못 되돌리지만 대충은 알고 싶은
-
경영이 4칸 뜨고 심리,미컴이 3칸 뜨는데 뭘까요…
-
원서 넣는 거 처음인데 2/8~10까지 최초합격자가 등록해야하는 거면 이제 다른...
-
원래는 작년 수능 대비로 만들어 두었던 것이라 파일 제목은 '수능 직전 한국사...
-
.
-
다군에 쓸게없노 0
중경 가서 뭐함 ㄹㅇ..
-
지거국 소수과 4명모집에 낙지 모의지원 46명중 3등 텔그는 연한 파란색인데 웬만하면 붙겠죠?
-
성적인증 0
아직도 성적인증 안한 상위 표본은 무시해도 되는건가요? 1칸 2칸 3칸 4칸 5칸...
-
떡치기 찹찹찹찹 1
,
-
어디가 좋을까요….? 너무 심란하네요 외글이랑 설여는 어문 전공이고 강원대는...
-
컨설팅에서는 칸수가 후자가 높지만 전자가 합격되어 빠질가능성이 높다고 하여 전자를...
-
셋 다 과는 같은 건축계계열인데 어디써야할까요 같은 가군이라 셋 중 하나만 지원...
-
ㅈㄱㄴ
-
숭실경제vs아주경영 10
반수할건데 어디 감? 거리는 아주대가 20~30분 더 걸림 참고로 숭실대는 2학기...
-
사진빨인줄 알앗는데
-
진짜 ㅡ개맛있음
-
‼️우석대학교 약학과 25학번 새내기 여러분을 찾습니다‼️ 0
안녕하세요 제 41대 우석대학교 약학과 학생회 ☘️우연☘️입니다. 우선 우석대학교...
-
대2때부터 외무고시준비할거애요 근데 서강대는 복전이 필수인걸로알고있어서요..
-
성공 ㄱㄴ?? 한 20명이 지원 안해야되긴함ㅋㅋ 칸수 626인데 걍 666으로 가?
-
제가 쓰려는과가 13명 뽑는과인데 진학사 예측으로 8칸 안정입니다 그런데 그 과가...
-
많은 사람들이 듣는 인강과 많은 사람들이 푸는 n제를 알려주세요
-
10초 ㅇㅈ 14
과거사진 지금은 +6kg찜 .. 크로플이랑 푸딩같은 디저트가 맛난걸 여친덕에 알게됨
-
광운-건축 성신여-신소재공 한국외-바이오메디컬 원서를 써야하는데 3개가 고민됩니다...
-
이제 뭐해야지 0
인강을 들어야하는데 그 전에 교재부터 사야하는데 아 ㅅㅂ 윤혜정개념의나비효과...
-
저단변속할때 부드럽게 하는 팁있나요 좀 울컥거리던데 속도를 충분히 안 줄여서 그런가...
-
생명 인강... 0
2025 철두철미 교재 샀었는데 거의 안 썼어서 2026 거 다시 사기는 좀...
-
ㄹㅇㅋㅋ
-
고대전전vs서울대 원핵공 조해공 응생화 지구환경과학 9
틀딱이라 취업밖에 안보이면 샤뽕 버리고 ㄷㅈ임?
-
고대 문과 이미 썼는데 16
연대를 썼어야 하나
-
와 개짱신기해 ㄹㅈㄷ 지금 모든 선생님들의 강좌를 보는중임 엄마가 질러줌 죄송합니다
-
진학사 첨쓰늠데 불합격에서 추합 개많이돌면 저리되나여
-
서성한 급간도 아니고 그보다 밑임
-
본인은 수1은 좀 괜찮고 수2는 못하는편인데 나름 수1에서 실수도 많이 나고(어렵기...
-
1. 모집인원 70명으로 대형과 2. 반영비 이슈 + 사탐가산이슈로 교차 급감 3....
-
같은 학교인데 가군 다군 다 4칸이면 가군을 쓰는 게 나을까요? 가군은 대형과고...
-
업뎃 까먹엇나? 0
뭐하는거뇨 일년에 한달일하면서
-
당연히 0명이죠 엌ㅋㅋㅋㅋㅋㅋㅋ ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 장난으로 진학사...
-
역시 볶음밥에는 계란후라이가 있어야지
-
진학사 안정 2
200명 넘게 뽑는 대형관데 이정도면 무조건 붙을 수 있을까요?? 소신 2개 지르기...
불연속지점 ㄷㄷ
저도 갑자기 확 오른거보면 맞는듯
어느순간 확 오를거에요 !
논리적인 사고과정 정리하고 다음에 이렇게 생각하려면 어떻게 행동해야 하는지 고민하기
저도 작수 4에서 6평 99로 올렸는데
생각해 보면 2등급 아래로는 문제풀이량이 절대적으로 부족한 듯
진짜 와닿는 글...
수학뿐만 아니라
국영탐도 해당이라 보는데 비동의 하시나요?
동의합니다
좋은글 감사합니다 평소에 저런식으로 기출이랑 N제 공부하는데 성적 꼭 많이 올랐으면 좋겠네요
오르실거에요!
보통 어떤 등급에서부터 막힌다고 생각하시나요? 3등급?
와 감사합니다..!!
진짜 확오르는거는 맞는 듯
제가 9모 때까지 3등급이었다가 수능 때 1등급초 찍음
한달 지나고 보니
위 칼럼처럼 벽이 하나씩 부숴지는 중입니다
수학맛있네요
ㄹㅇ 수학은 뭔가 문제 푸는 알고리즘만 깨우치고 그거 적용해서 문제 벅벅 풀다보면 금방 오르는듯
저도 두달만에 2에서 90점대로 올림
감사합니다
1컷인데 갑자기 만점나오는 그날이 오면 좋겠어요..
칼럼 주제에 대해서 궁금한 점 쪽지드려도 될까요??
네~
와 아이민
결국 성적 확 오르는걸 경험하셧다는게 너무 부럽습니다..
고1때부터 반수하는 지금까지 등급이나 성적변동이 거의 없었는데 좋게 말해야 유지지 계속 똑같은 상태이니 이게 맞나 혹은 해도 성적이 오를까 하는 회의감이 자꾸 드네요ㅜㅜ 한번 이 방식 써서 계속해서 수학공부 해보겠습니다..!
대단하십니다