-
극도로 나와 연이 조금이라도 있는 사람과 멀어지거나 이별하는것에 존나 집착해서...
-
더데유데 2-4 0
손가락 6개짤림 ㅋㅋ (80)
-
저는 삼계턍
-
유신,박광일,김상훈 중에 고민중
-
고전오설 중에 옥소선 이런거 말고 공부해야할만한 거 머있음? 일단 생각나는 건...
-
~?
-
올림픽 이제 다해서 다른 문제집 빠르게 풀어보고 싶은데 검더텅 얼마나 걸릴까요 아님...
-
분컷 84점
-
이 지문도 어려웠음..
-
수능 D-376 1
안녕하세요 내년 입시를 준비하게된 틀딱 문돌이입니다..? 대학 다니다가 이과로...
-
언매 89 독서 그 파장? 이상한거 틀리고 가나지문 두학자 입장 비교하는 것도...
-
상속이 안된다는데 왜죠? 이혼신고까지 해야지 이혼 성립 아닌가요
-
재수 1
자살 수학9번 27번 더 틀림 진짜 와
-
이감 컷 3
이감 컷은 보통 실제보다 높은가요 낮은가요?
-
작수 물지 1 2(현장) 6평 1 1 (집) 9평 1 2 (집) 사탐이 등급따기도...
-
ㅠㅠ
-
불법 행위에 의한 손해배상은 고의 또는 과실로 인한 경우에만 1
해당하나요?
-
수능 높3정도의 수준인가요?
-
엄마가 날짐승 얘기할때 울컥하게 됨
-
시간이 붕 뜨네 6
한 30분정도 뭐하지
-
지금 문학 연계 강의 듣는거 보다는 차라리 혼자 빨리 읽는게 나을까요?? 강e분...
-
국어 고전소설 몰빵, 독서 작수 이하 문학도 작수보다 훨씬 쉽긴 했는데 현대시 부분...
-
화1 0
이거 시그모 시즌3 수능 내면 1컷 몇예상?
-
고민이 되는구만
-
이퀄 ㅁㅌㅊ 0
언매 81 미적 92 영어 94 화학 47 생명 47 21111 될까요?,,
-
https://orbi.kr/profile/1088100 세상에서 가장 MZ한 엄마...
-
재성민 선생님은 목소리때문에 안맞아서 혹시 대성에 양승진같은 스타일 있을까요 ?...
-
강기원 라이브반 4
아프리카반은 에코백 종강선물 안주나요
-
매년 과외, 학원 수업하면서 느끼는데 듄 실모 생각보다 잘 뽑음... 굳이굳이 비싼...
-
수학 황님들 2026 수학 로드 조언 부탁드려요..! 0
안녕하세요 내년 3월에 전역하는 군인입니다 지금부터 2026 수능을 준비하려고...
-
이감6-9 4
아직 등급컷 안나왔나요
-
잡담안달았는데 수정이안되뮤ㅠ
-
그림체가 비슷해서 남매해도 믿겟네
-
트레일러 시킴 0
흠냐 철철모 거의 다풀엇어요
-
언미물지 로 어느정도 백분위 맞아야 안정으로 가나요
-
수학 어렵다 11
고2랑완전다르네…
-
clothing20snu 대성 커피 먹구가 ~~ ⸝⸝> ̫ <⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
지금해도 늘지도 않을것같고 그동안 쌓아온 피로때문에 실제로 지친것도 있고…. 다들...
-
시발점같은 교과개념은 언제까지 끝내는게 이상적인가요? 22
워크북이나 쎈 같은 유형문제집 병행한다는 기준으로요! 저는 확통까지해서 1월전으로...
-
Σ위기=위대 이게 아니고 Σ위기 = 좆됐다! 입니다.
-
11덮 국어 0
78정도면 수능때 3컷이라도 가능한가요
-
윤성훈쌤 강의 듣던중에 생계형 범죄가 머튼 아노미 이론의 대표적인 예시라고 하셨는데...
-
후
-
제하하하하하 0
-
수학지능 개박살 수능날 3등급이 받고싶구나
-
링거맞고옴 1
밥먹고 덮 사문 달릴예정
-
고2 10월 모고 수학 2등급(9월 72 10월 80)입니다 뉴런(25)...
-
ㅅㅂ풀다가정병올거같아서못풀겟음
-
국어 실모 123 다 뜸 김승리 모고인데 진동폭이 너무 크다…
에프 3이 영
답이 1번인가여?
f(x) = x(x - 3)² (x <= 3)
이거같긴 한데
풀이 부탁드여요 냅
결국 int 0 to 5 |f(x)| dx는
반드시 int 0 to 3 f(x) dx 보다
같거나 클 수밖에 없으니까
이 두 값이 같아지려면
구간 [3, 5]에서 f(x) = 0이어야 하고
실수 전체 집합에서 미분가능하므로
f(3) = f'(3) = 0이 되어야 합니다
이러면 깔끔하네요!
우극한과 좌극한으로 나누어 생각해보면 둘 모두 구간 [0, 5]에서 함수 |f(x)|를 적분한 값과 구간 [0, 3]에서 함수 f(x)를 적분한 값이 일치해야 수렴.
미적분학의 기본 정리에 따라 g'(x)=|f(x)|로 두고 주어진 정적분을 g(5)-g(x)-(g(5)-g(0))=-(g(x)-g(0)) 정도로 바꾸어보면 우극한은 -g'(0)으로 수렴하고 좌극한은 g'(0)으로 수렴.
따라서 -g'(0)=g'(0)이 되어야 주어진 극한이 수렴. 이때 g'(x)=|f(x)|이므로 f(0)=0
x가 3 이하일 때 f(x)는 삼차함수의 일부이므로 f(x)=x^3+ax^2+bx (a, b는 상수). x가 3 초과일 때 f(x)=h(x)라 하자. 이때 문제 조건에 따라 h(x)는 x>3에서 미분 가능한 함수이다.
이때 구간 [0, 5]에서 |f(x)|를 적분한 값과 구간 [0, 3]에서 f(x)를 적분한 값이 일치하므로
구간 [0, 3]에서 |x^3+ax^2+bx|를 적분한 값에 구간 [3, 5]에서 |h(x)|를 적분한 값을 더한 것이 구간 [0, 3]에서 (x^3+ax^2+bx)를 적분한 값과 같아야 한다.
만약 구간 [0, 3]에서 곡선 y=x^3+ax^2+bx의 그래프가 x축보다 아래에 위치하지 않는다면 |x^3+ax^2+bx|=x^3+ax^2+bx가 되어 구간 [3, 5]에서 함수 |h(x)|를 적분한 값이 0이 되어야 함을 확인할 수 있다.
그런데 구간 [3, 5]에서 곡선 y=|h(x)|의 그래프가 x축보다 아래에 위치하지 않으므로 h(x)=0이 되어야 하고, 이때 함수 f(x)는 x=3에서 미분 가능하므로 곡선 y=x^3+ax^2+bx가 x=3에서 x축에 접해야함을 확인할 수 있다.
이를 만족하는 곡선은 y=x(x-3)^2이다.
이 경우 f(1)=1*(-2)^2=4가 되어 정답이 1번일 것이라 추측할 수 있겠는데... 구간 [0, 3] 내의 구간 [p, q]에서 곡선 y=x^3+ax^2+bx 의 그래프가 x축보다 위에 위치하는 경우에는 어떻게 정리해야할지 잘 모르겠네요
위에 댓글 논리 따라가면 구간 [3, 5]에서 h(x)=0이 될 수밖에 없음을 확인하고 y=x(x-3)^2 발견할 수 있네요! 2023학년도 대학수학능력시험 9월 모의평가 14번 ㄱ과 함께 보면 좋겠네요