9평 다가온 김에 렌즈 칼럼
게시글 주소: https://old.orbi.kr/00069030799
렌즈 왼쪽에서 물체를 움직이며,
물체의 위치에 따른 상의 크기를 나타내보겠습니다.
그래프가 대략적으로 이렇게 그려지겠죠.
0.5f처럼 f보다 오른쪽은 허상이 생기는 곳이고,
3f처럼 f보다 왼쪽은 실상이 생기는 곳입니다.
딱 f에는 상이 생기지 않겠죠.
한편, y축에 '상의 크기' 대신 배율을 넣어도 똑같을 겁니다.
y축을 배율로 바꾼 뒤에, 알고 있는 사실 몇 개를 그래프에 추가해보겠습니다.
첫 번째는 y절편이 1이라는 사실입니다.
허상은 배율이 1보다 클 것이고,
물체가 렌즈에 다가갈수록 배율이 1에 가까워질테니까요.
(작도를 통해 생각해보세요)
두 번째는 2f에서 배율이 1이라는 점입니다.
렌즈 문제를 많이 풀어봤다면 알고 있어야 할 사실이죠.
이렇게 그려놓고 보니, 왠지 모르게...
"그래프가 선대칭이진 않을까?"
하는 생각이 듭니다.
신기하게도 이 추측은 사실입니다. 그 말인즉슨
1.2f에서 배율과, 0.8f에서 배율이 같습니다.
둘 다 f에서부터 같은 양만큼 떨어졌기 때문입니다.
예를 들어, 문제에 이런 상황이 주어졌다고 합시다.
렌즈로부터 2L만큼 왼쪽에 물체를 뒀을 때와,
렌즈로부터 8L만큼 왼쪽에 물체를 뒀을 때
생기는 상의 크기가 같다.
그럼 독자는 f=5L이라고 바로 찾고 시작하는겁니다.
근데 배율이 같을 때만 써먹을 수 있다면 활용도가 너무 떨어집니다.
확장을 해보겠습니다.
사실 이 그래프는 말이죠, y=1/x 처럼 반비례 관계를 찾을 수 있습니다.
잠시 y=1/x 그래프를 관찰해보겠습니다.
위 그림처럼,
y축으로부터 떨어진 거리가 1:3이라면
함숫값이 3:1이 됩니다.
이런 일이 배율 그래프 위에서도 생깁니다.
이유는 뒤에서 소개해드릴 건데요,
일단 예시를 통해 뭔 말인지 이해부터 해봅시다.
초점이 2L인 렌즈에서, 3L과 6L에 뒀을 때 배율이 궁금한 상황입니다.
초점으로부터 떨어진 양이 1:4이므로,
3L에서 배율이 4배입니다.
하지만 이걸론 부족합니다. 진짜 배율이 각각 몇인지 알고 싶으니까요.
이때 2f (여기선 4L)에서 배율이 1이라는 사실을 이용해줄겁니다.
4L에서 배율이 1이기 때문에,
4L에 비해 떨어진 거리가 절반인 3L에서는 배율이 2,
4L에 비해 떨어진 거리가 2배인 6L에서는 배율이 1/2 입니다.
이걸 이용해 아래 평가원 기출문제를 풀어보세요.
답은 1번입니다.
수직선 그어놓고 이 정도 표시만 해주면 바로 답이 나옵니다.
한 번만 더 응용해보겠습니다.
아래 그림처럼
빨간 위치에 물체를 두면 배율이 1,
파란 위치에 물체를 두면 배율이 2라고 해봅시다.
이때 초점의 위치를 바로 알 수 있습니다.
2:1 내분점에 초점이 위치한다고 바로 찾을 수 있겠죠.
혹은,
초점이 여기에 있어도 말이 되겠네요.
이번엔 2:1 외분점입니다.
배율 그래프에서 '반비례 관계'를 찾을 수 있는 이유도 짧게 알아보겠습니다.
좌변은 배율을 의미합니다.
우변은 그려보면...
지금 변수가 a인겁니다.
변수를 헷갈리지 말라고 그림에는 a대신 x를 써뒀습니다.
식의 꼴을 보니 반비례인 이유를 아시겠죠.
y=1/x 그래프를 f만큼 평행이동한 셈입니다.
근데 그동안 이런 거 없이 렌즈 문제 잘만 풀어오셨을 겁니다.
사실 저도 많이 쓰진 않아요.
그런데 은근히 이걸 쓸 각이 보일 때가 있습니다.
그 각을 본다면 계산과 시간의 측면에서 꽤나 이득을 봅니다.
마치 여러분이 수학에서
삼차함수 2:1 관계를 모든 문제에 쓰진 않으나,
필요시 적재적소에 쓰는 것처럼요.
물론!! 본인이 렌즈에 숙달된 게 아니라면
이런 걸 익힐 때가 아닙니다.
항상 기초가 우선입니다.
렌즈는 계산만 착실히 잘해도 다 잘 풀리니까요.
준비한 내용은 여기까지입니다.
아직 할 말들이 남아서,
기회가 되면 렌즈2편도 가져오겠습니다.
도움이 되셨다면 좋아요 누르고 가주세요
다음에 또 좋은 글로 찾아뵙겠습니다.
#무민 #물리학2
0 XDK (+10,000)
-
10,000
-
김범준 대기 0
공통은1000번대 미적은 700번대라는데 스블 전엔 죽어도 안빠지겠죠? 3-4월쯤에...
-
최저러임?
-
방 벽면 근황 4
큰거하나 붙여둠
-
If you 1
너도나와같이 힘들다며 우리 조금 쉽게갈순없을까 있을때 잘할걸그랬어
-
그런거안고자면왠지 평생느껴보지못한 감정을느낄수있을것만같음
-
각자 84 하고 싶으면 걘 84로 컷 맞춰주고 92가 등급컷이었음 좋겠으면 걘...
-
에휴 시발
-
알바천국에 올라와있길래.. 네이버에 쳐도 안뜨긴하네요.
-
인스타가 디시(DC)화 되고 있다는 말을 안 믿었는데 7
진짜 존나 어질어질하노….
-
십덕 오타쿠 인증 12
히히
-
운동이나가야지 외모9등급이라인생이불공평하구나.
-
알바 면접 파토내도되나요...? 오라구 하셨는데 좀 무섭고 하기 싫어졌어요 ㅠㅠ 어떡해요?
-
지금 현 23, 24학번들 자퇴 많이 할 것 같나요?? 뭐 반수나 편입 등등으로
-
내년에 할 선택과목 투표하고 가주시면 감사하겠습니다!
-
데코니나 신곡 5
앨범 트레일러에 나왔던 노래 짱이다 달달한 초코우유 두개 한번에 먹는 느낌..
-
잤는데 꿈 꿨음 6
내가 아쿠아리움에서 마이크들고 당년정 부르는 꿈임 안내 데스크 누님이 잘부른다고...
-
글 정리본 없나... 나 하나도 모르는데... 가이드같은거 봐도 뭔말인지...
-
수단이 아니라 목적이야 삼반수하는 이유도 메디컬을 가기위해 X 수능을 잘 보기위해 O
-
근데 겨우 1컷따리임… 수도권지역 아니고 지방쪽에 사는데, 받는사람 있을까…?
-
어짜피돈걱정은안할거같으니 내가하고싶은거하며 내가좋아하는사람과 평생사는게꿈임 근데그게좀많이힘듬
-
타인의 말에 휘둘리지 말고 갈 길을 가면 좋겠습니다. 메디컬이 가고 싶으면 메디컬에...
-
님들같으면 어디감????? 둘다좋다 난
-
굿즈 같은거 사는 분 많이 없어요???? 난 다 나처럼 저런거 방에 하나는 있겠지...
-
오직 등급만 따질때 확통이 1등급 따기 가장 쉽나요? 0
궁금해용 근데 수학 성적 산출은 확통 미적분 기하 다 한꺼번에 내니까 상관 없나용...
-
시버류ㅠㅠㅠㅠㅠㅠㅠ 6모 9모 백분위 98~99맞아도 수능때 80맞아버려서 못함...
-
전기기능사따는데 0
보통 얼마나 걸리나요?
-
러닝하니까 폐가 얼어붙는느낌
-
진짜 너무 옹졸해보임 오늘만 두번당햇서..
-
그냥 맨날 가슴이나 만지면서 살고 싶음.. (물론 본인건×) 메인글 보고 갑자기 든 생각
-
와.. ㄹㅇ어디까지 가는거냐 미누야.. 너무 연예인이 됐어..
-
이거 국어 수학 탐구 중 2과목 만점+ 영어 한국시 1등급이라는데 그럼 탐구의 경우...
-
님들은 누가 위대하다고 생각함?
-
침대에 누워있으면 유이랑 무기랑 눈 마주칠 수 잇음여 엄마랑 아빠가 이거 보고 한숨 쉬었어요… 흑흑
-
흠
-
커뮤하면 아무것도 생산적인일 안하는 병신인줄 아노 ㅋㅋ 4
어 니보다 열심히 사니까 아가리좀 여물어줘^^
-
어디 기사보니까 공대 과마다 휴학 비율이 엄청나던데 대부분이 메디컬 가려고 휴학한다고..
-
사탐 의대도 막아라 우우
-
다들 어떻게 생각하세요 탐구 난이도에 따라 달라진다했는데 올해 과탐이 어려우니깐 5%일까요?
-
김범준 대기 0
오늘 걸어놨는데 4월전에 빠지나요
-
입술에서 피가 몇번째 나는건지 모르겠어요오
-
6 9 수능 96 96 96 이네 ㅆㅃ이
-
심심해... 놀아줘
-
짝사랑+상사병 9
하 진짜 어이털리는 고민이긴 한데 쓸 데가 없어서 일단 여기에 써볼게요..처음...
-
지하철에서 방금 나왔는데 순간 숨이 안 쉬어졌다
-
리트 1타 아니셨나?
-
기사에선 가채점 만점자 현재까지 세화고 1명으로 확인되었다는데 막 두자릿수라는...
-
라인봐주실분.. 1
언미물1지1 백분위 96 94 86 99 영어 2등급입니다 서성한공대 ㄱㄴ할까요
-
좌극한이랑 우극한이랑 바뀐건가요?
-
근데 이번 영어 듣기 어려웠다고 그러는 분들이 많구나 5
근데 토익 LC는 진짜 몇배는 더 ㅈ같음ㅋㅋ
https://orbi.kr/00064989284
배율공식 f/a-f 아닌가요?
그리고 2l 8l상황에서 배율이 같으면 f =5l아닌지도...
렌즈? 렌즈! 렌즈! 렌즈!
ㄹㅇ광기
물리 모루지만 좋아보여서 좋아요튀
맛있는 글 감사합니다!
아 이 렌즈..
감사합니다! -렌즈 크리스타-
문제 풀면서 막연하게 쓰고 있던 게 확실하게 정리되는 거 같네요
감사합니다!!
와! 렌즈! 씹리학2 아시는구나! 혹시 모르시는 분들을 위해 설명드립니다 전자기와 도플러와 함께 의문사 복병 삼대장으로 진.짜.겁.나.귀.찮.습.니.다.
푼 건 모조리 피해가고 오목렌즈 거울 다 빠져서 만만히 봤다가 거들떠도 안 보던 다중렌즈로 뒷목 잡게 되는데 정답률 보면 나만 틀립니다...
하지만 이러면 절대 깰 수가 없으니 제작진이 치명적인 약점을 만들었죠. 바로 사탐런이라는 것입니다...
눈에 끼는 렌즈인 줄 알고 들어왔는데…
와! 렌즈 아시는구나!