9평 다가온 김에 렌즈 칼럼
게시글 주소: https://old.orbi.kr/00069030799
렌즈 왼쪽에서 물체를 움직이며,
물체의 위치에 따른 상의 크기를 나타내보겠습니다.
그래프가 대략적으로 이렇게 그려지겠죠.
0.5f처럼 f보다 오른쪽은 허상이 생기는 곳이고,
3f처럼 f보다 왼쪽은 실상이 생기는 곳입니다.
딱 f에는 상이 생기지 않겠죠.
한편, y축에 '상의 크기' 대신 배율을 넣어도 똑같을 겁니다.
y축을 배율로 바꾼 뒤에, 알고 있는 사실 몇 개를 그래프에 추가해보겠습니다.
첫 번째는 y절편이 1이라는 사실입니다.
허상은 배율이 1보다 클 것이고,
물체가 렌즈에 다가갈수록 배율이 1에 가까워질테니까요.
(작도를 통해 생각해보세요)
두 번째는 2f에서 배율이 1이라는 점입니다.
렌즈 문제를 많이 풀어봤다면 알고 있어야 할 사실이죠.
이렇게 그려놓고 보니, 왠지 모르게...
"그래프가 선대칭이진 않을까?"
하는 생각이 듭니다.
신기하게도 이 추측은 사실입니다. 그 말인즉슨
1.2f에서 배율과, 0.8f에서 배율이 같습니다.
둘 다 f에서부터 같은 양만큼 떨어졌기 때문입니다.
예를 들어, 문제에 이런 상황이 주어졌다고 합시다.
렌즈로부터 2L만큼 왼쪽에 물체를 뒀을 때와,
렌즈로부터 8L만큼 왼쪽에 물체를 뒀을 때
생기는 상의 크기가 같다.
그럼 독자는 f=5L이라고 바로 찾고 시작하는겁니다.
근데 배율이 같을 때만 써먹을 수 있다면 활용도가 너무 떨어집니다.
확장을 해보겠습니다.
사실 이 그래프는 말이죠, y=1/x 처럼 반비례 관계를 찾을 수 있습니다.
잠시 y=1/x 그래프를 관찰해보겠습니다.
위 그림처럼,
y축으로부터 떨어진 거리가 1:3이라면
함숫값이 3:1이 됩니다.
이런 일이 배율 그래프 위에서도 생깁니다.
이유는 뒤에서 소개해드릴 건데요,
일단 예시를 통해 뭔 말인지 이해부터 해봅시다.
초점이 2L인 렌즈에서, 3L과 6L에 뒀을 때 배율이 궁금한 상황입니다.
초점으로부터 떨어진 양이 1:4이므로,
3L에서 배율이 4배입니다.
하지만 이걸론 부족합니다. 진짜 배율이 각각 몇인지 알고 싶으니까요.
이때 2f (여기선 4L)에서 배율이 1이라는 사실을 이용해줄겁니다.
4L에서 배율이 1이기 때문에,
4L에 비해 떨어진 거리가 절반인 3L에서는 배율이 2,
4L에 비해 떨어진 거리가 2배인 6L에서는 배율이 1/2 입니다.
이걸 이용해 아래 평가원 기출문제를 풀어보세요.
답은 1번입니다.
수직선 그어놓고 이 정도 표시만 해주면 바로 답이 나옵니다.
한 번만 더 응용해보겠습니다.
아래 그림처럼
빨간 위치에 물체를 두면 배율이 1,
파란 위치에 물체를 두면 배율이 2라고 해봅시다.
이때 초점의 위치를 바로 알 수 있습니다.
2:1 내분점에 초점이 위치한다고 바로 찾을 수 있겠죠.
혹은,
초점이 여기에 있어도 말이 되겠네요.
이번엔 2:1 외분점입니다.
배율 그래프에서 '반비례 관계'를 찾을 수 있는 이유도 짧게 알아보겠습니다.
좌변은 배율을 의미합니다.
우변은 그려보면...
지금 변수가 a인겁니다.
변수를 헷갈리지 말라고 그림에는 a대신 x를 써뒀습니다.
식의 꼴을 보니 반비례인 이유를 아시겠죠.
y=1/x 그래프를 f만큼 평행이동한 셈입니다.
근데 그동안 이런 거 없이 렌즈 문제 잘만 풀어오셨을 겁니다.
사실 저도 많이 쓰진 않아요.
그런데 은근히 이걸 쓸 각이 보일 때가 있습니다.
그 각을 본다면 계산과 시간의 측면에서 꽤나 이득을 봅니다.
마치 여러분이 수학에서
삼차함수 2:1 관계를 모든 문제에 쓰진 않으나,
필요시 적재적소에 쓰는 것처럼요.
물론!! 본인이 렌즈에 숙달된 게 아니라면
이런 걸 익힐 때가 아닙니다.
항상 기초가 우선입니다.
렌즈는 계산만 착실히 잘해도 다 잘 풀리니까요.
준비한 내용은 여기까지입니다.
아직 할 말들이 남아서,
기회가 되면 렌즈2편도 가져오겠습니다.
도움이 되셨다면 좋아요 누르고 가주세요
다음에 또 좋은 글로 찾아뵙겠습니다.
#무민 #물리학2
0 XDK (+10,000)
-
10,000
-
머리카락 쥐어뜯어서 1개 뽑히면 무슨무슨 의미고 2개 뽑히면 어쩌구저쩌고 10개...
-
저메추해주세요 14
맛있는거 배달시켜먹을테야
-
현역때 내신 0
ㅈㄱㄴ
-
휴학한 이후로 집에서 혼자 고기 종종 구워먹다보니 이젠 고기 잘 굽는다는 말도...
-
내년엔 할수 있을까?
-
디시에서 존댓말했다가 욕 먹음 ㅋㅋ
-
그때 했으면 진짜 흑역사 왕창 생성했을 거 같은데
-
물론 케스파컵이고 단판제라 의미없긴한데 잘하네진짜 지니가 보물인듯
-
이 노래 나올 때 초딩이었음 ㅇㅇ
-
실모 잘 보면 참지 못하고 자랑하는 baby임뇨..
-
하면 내가 개임뇨
-
글 곳곳에 어떻게든 본인 자랑하고 싶어하는 거 보니 5
초6 맞는 듯 ㅋㅋㅋㅋㅋㅋ 근데 초6이 일침 넣는 건 진짜 ㅈㄴ 웃기네 정작 나이...
-
전민떠라
-
내가 어릴 때 초등학교 애들한테 욕 많이 먹었던 게 19
점심시간마다 담임쌤이(근데 '담임' '다님'으로 발음하는 거 좀 특이함) 노래...
-
오늘 아침에만 집중 잘되고 오후부터 수학이랑 물리하는데 집중이 잘 안되요 집중 잘...
-
그나마 지성적이라고 볼 만한 건 유치원 친구랑 달토끼가 있냐 없냐로 싸우던 경험 딱...
-
캬캬
-
수족냉증 7
해결법 없으려나 겨울마다 이게뭐람..얼죽아인 사람한텐 너무 춥구나
-
뭐가 더 나을까여? 참고로 김승리 수강생 아님여. 강k랑 이감 지문 있다길래 들어볼까 고민중
-
고지능 성격인가
-
친구가 감이 없네 형들이 이렇게 원하는데 ㅋㅋㅋㅋ
-
코믹 메이플 스토리
-
쉬는 시간에 책 처읽고 사회화 좆박은 새끼였음 그래서 지금도 이 모양 이 꼴임
-
공용컴퓨터가 있는 곳이 있고 없는 곳이 있었어서 미용실이나 치과 가면 제일 먼저...
-
다들 프메 듣고 26수능 만점 쟁취합시다.
-
오히려 저런 글을 쓰니까 초딩이 맞을 수 있지 않을까 5
자기가 더 뛰어나거 아는 것이 많음을 피력하고 싶어하는 게 딱 그 나이대 얘들...
-
계정 찾았다 4
반년만이군…
-
선착 1명 2000덕
-
겨울 노래는 이게 좋다고 이것들아
-
수능끝나고 알바 4
수능끝나고 피씨방이랑 이마트알바하는데 일하는데 되게 보람차고 좋네요 근데 알바...
-
다닐때랑 안다닐때 소비내역 차이가 ㄷㄷ
-
뭐있음??
-
코고로 탐정도 한 건 하나?
-
분식집 가서 컵떡볶이나 슈감자 먹기 모닝글로리 같은 데서 불량식품 사 먹기 고무딱지...
-
그래서 저 초딩임뇨
-
(스샷 삭제) 제가 중1일 때 같이 역스퍼거하던 어떤 초6은 저런 글을 A4 10장...
-
갑자기 궁금하네요
-
ㅇㅂㄱ 1
ㅎㅇ
-
간장게장 시 0
옛날엔 몰랐는데 지금 다시 읽으니까 ㅈㄴ 슬프네ㅋㅋㅠ
-
놀랍게도진짜임
-
공감대가 하나도 없네 ㄹㅇ이
-
인생 최대 업적) 방금 기말 피피티 목차 다씀
-
안녕하세요 저는 XX초등학교 6학년 1반 1번 쉬라몬이라고 합니다 5
초딩들은 이런 거 읽을 때 딱딱 끊어 읽는 게 국룰임.
-
그게 나야 바 둠바 두비두밥~ ^^
-
이사람 유튜브 많이 봤는데 이사람 마크 닉네임 아직도 기억남 G_G_Apple
-
오 열품타 통계 1
지구 조진건 업보가 맞구나..
-
2000년 KBS판 방영 2013년 애니맥스 재더빙 방영 2024년 투니버스 삼더빙...
-
아무리 그래도 이 대학은 안 받아도 된다<<좋아요 아니다 가천대도 감지덕지하다<<댓글로 임티ㄱㄱ
https://orbi.kr/00064989284
배율공식 f/a-f 아닌가요?
그리고 2l 8l상황에서 배율이 같으면 f =5l아닌지도...
렌즈? 렌즈! 렌즈! 렌즈!
ㄹㅇ광기
물리 모루지만 좋아보여서 좋아요튀
맛있는 글 감사합니다!
아 이 렌즈..
감사합니다! -렌즈 크리스타-
문제 풀면서 막연하게 쓰고 있던 게 확실하게 정리되는 거 같네요
감사합니다!!
와! 렌즈! 씹리학2 아시는구나! 혹시 모르시는 분들을 위해 설명드립니다 전자기와 도플러와 함께 의문사 복병 삼대장으로 진.짜.겁.나.귀.찮.습.니.다.
푼 건 모조리 피해가고 오목렌즈 거울 다 빠져서 만만히 봤다가 거들떠도 안 보던 다중렌즈로 뒷목 잡게 되는데 정답률 보면 나만 틀립니다...
하지만 이러면 절대 깰 수가 없으니 제작진이 치명적인 약점을 만들었죠. 바로 사탐런이라는 것입니다...
눈에 끼는 렌즈인 줄 알고 들어왔는데…
와! 렌즈 아시는구나!