수학잘하시는분 저 좀 도와주세요ㅠ제발
게시글 주소: https://old.orbi.kr/00070202161
진짜 수헁 급한데 미적분의 힘이라는 책읽고 내용 요약했는데
수학적 오류가 있을지 너무 걱정돼요...ㅠㅜ
진짜 조금씩만 보시고 충고해주셔도 너무 감사하니까
제발 저 좀 도와주세요...
미적분학은 무한을 사용해 유한을 연구하고, 무제한을 사용해 제한된 것을 연구하고, 직선을 사용해 곡선을 연구한다."라는 문장이 가장 인상깊다. 이 한문장으로 심오하고 단 한 가지 개념을 이해하기 위해서도 방대한 배경지식을 필요로 하는 미적분을 함축할 수 있다는 점에서 그러하다. (거의 선에 가까운)무한한 직사각형들을 통해 평면의 넓이를 구하고 그 넓이들을 통해 입체적인 부피를 구할 수 있게 하는 것과 직선을 통해 곡선을 이해한 대표적 예인 원으로 각각 내접하고 외접하는 정육각형, 정십이각형, 정이십사각형, ... 무한에 가까이 가면 곡선의 형태를 띠게 되는 것을 볼 수 있다.(아르키메데스가 원주율을 구한 방법인 조임법을 기반으로 무한의 원리가 곡선을 이해가능하게 해준다. 아르키메데스는 또 다른 곡선인 포물선의 활꼴의 넓이도 무한히 많은 삼각형 조각으로 이루어져 있다고 재해석하여 구해냈다.)
제논의 양분의 역설, 아킬레스와 거북 역설, 화살의 역설을 미적분학을 이용해 풀이할 수 있다. 예를 들어 초속 1미터로 달리는 거북이 아킬레스보다 10미터 앞에서 출발하지만, 아킬레스가 거북보다 10배 빠르다면 아킬레스는 거북의 출발지점까지 가는 데에 1초 걸린다. 그동안 거북은 1미터를 이동할 것이고 그 차이만큼 가는 데에 아킬레스는 다시 0.1초가 걸리고 이것이 반복되면 무한급수로 1.111...초인 10/9초가 된다는 것을 알 수 있다. 제논은 시간과 공간이 연속적으로 존재한다는 사실 즉, 시공간을 끝없이 계속 쪼갤 수 있다는 것을 역설의 모순을 통한 증명으로 귀류법을 통해 반박한다. 그러나 위에 예로 반박했듯이 따라잡는 간격이 무한히 줄어들어 무한한 시간이 걸린다는 제논의 주장은 줄어드는 거리가 유한한 거리로 수렴하는 까닭에 거짓이 된다. 이로써 우리는 무한에 대해 한층 더 알 수 있다.
무한은 모든 양수보다 작지만 0보다 큰, 한없이 무한대로 작은 수인 무한소의 형태로도 존재한다. 만약 기존의 엑스라는 양이 아주 약간 변해 엑스 더하기 델타엑스가 되었다고 가정하자. 이 경우 입력에 일어난 작은 변화 델타엑스가 작은 변화 델타와이를 이끌어낸다. 그리고 작은 변화 델타엑스가 무한히 작아지면 가장 큰 몫을 제외하고 정답에 기여하는 나머지 몫을 모두 무시하는 사고방식을 적용할 수 있다. 이때의 델타엑스는 디엑스로 변하며 무한소를 디엑스처럼 사용하는 이 방법은 극한을 사용해 바꿔 기술할 수 있다. 그리고 이때의 무한소를 미분소라고 가리키는 것이다. 이 개념을 적용하면 엑스와이 평면 위에 있는 어떠한 곡선 그래프의 기울기는 와이의 도함수이며 델타엑스가 0에 접근할 때 델타와이/델타엑스(분자:델타와이,분모:델타엑스)의 극한값으로 정의된다. 여기에 미분소를 사용하면 디와이/디엑스로 표현된다. 그렇다면 우린 특정곡선 와이는 엑스세제곱의 기울기는 (변화를 나타낼 만한 디엑스 항을 제외한 다른 디엑스제곱, 디엑스세제곱 항은 버리는 식으로 계산하여) 삼엑스제곱임을 구할 수 있다.
(라이프니츠)
(라이프니츠에 가능하다면 적분 내용도 쓰고 싶었는데 짧게 같이 넣을 방법은 없을까요....??)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
님들 올수학이 확통1컷 100이여도 통통이 유리해씀? 2
흠. . .
-
개념 다시 정리하려는데
-
헉
-
운관은 일이 더 어렵고 일과시간에 공부하기 어렵다는 점, 중발은 그래봤자...
-
마음맞는 사람이 있을지 모르겠음
-
92가 정배겠죠. . . . 확통 쉽긴했어도 22도 까다로웠고 20,21 도...
-
현우진 뉴런 3
뉴런 개강은 12월 말이라고 하던데 그때 싹 다 올려주시는 건가요, 아니면 하니씩...
-
네셔널 퀀티티 퍼스
-
그래도 저는 실채점 성적뜨면 표점 152가 찍혀있을지도 모른다고 믿을래요
-
대학 어디갈수있나요? 이과이고 생기부는 잘채워져있습니다
-
재종 vs 독재 1
지방살고 있고 올해 수능 화미생지 43233 인데 재종이 좋을까요 독재가 좋을까요?
-
그려그려 그려그려
-
진짜 간절합니다..
-
보닌 비밀 6
아무도 몰름 왜냐면..... 나도 날 잘 모르니까!
-
공군 군수 1
23학번으로 입학했던 04인데, 원래 군수 생각없다가 사탐 공대가 가능하단 소식을...
-
화학 47 6
백분위 88이정배임…?
-
시즌2는 난 솔직히 그냥 너무 재미가 없었음 결과? ㅈ망하든 말든 알빠노 ㅋㅋㅋ...
-
있음? 집에서 1시간 40분 걸리네
-
노베스터디는 두번쯤 했으면 성공과 실패와 상관없이 사람들이 질릴때가 됐음 시즌3는...
-
영어 많이 2
보는 메디컬 ㅇㄷㅇㄷ지 연세 의치약 단국 의치약 또
-
흐
-
마크하고 싶은데 11
서버 주인한테서 답이 안옴 ㅠ
-
무 0
무
-
어쩌면 나는 도피의 방법으로 공부를 어중간하게 끄적거린 걸지도 모르겠다 1
시간이 없다 이제
-
반수하는 동생이 물리1으로 바꾸겠다는데, 어렵다는 역학파트를 할 수 있는지 먼저...
-
강민철 도장도 만들었는데 안 나옴 ㅠㅠ
-
그 어려운 다인자유전 강의가 3강으로 끝날수가있나? 그 이후로 스킬강의는 따로 없고...
-
멜트 ㄹㅇ 진짜 높음 16
첫 곡 선정은 에바였음
-
올해 컷 낮았는데 24 물 25 불이면 26 물로 나와서 1컷 50일거같은데...
-
등급 대략 제발 대충이라도ㅠㅠㅠㅠㅜㅠ 부산캠퍼스 그냥 들어가기만 하면되는데ㅠㅜㅡ
-
공통에서 다 틀린 언매 92 점 1등급 끝끝끝끝끝끝자락 ,,,, 가능성 없나요ㅠㅠㅠ
-
엣?
-
과탐 인강 들을라는데 저희 학교 내신따기 좀 빡세서 이번 겨울에 1학기 시험범위만...
-
5,6점 차이 나는데 어디가 맞을라나.. 메가가 더 높은데 후하게 주는건가
-
매월승리 0
승리쌤 커리 따라갈 예정인 예비고3인데 매월승리 필수인가요?? 주간지같은거 한번도 풀어본적은 없는데
-
어떻게 생각하시나요 국영수가 탄탄하지는 않습니다
-
ㅈㄱㄴ 문이과 따로 말고 한 학교에 인문 자연 섞여서 나오는거
-
강남 청솔학원임?? 같은 데인데 이름만 바뀐거임??
-
고민이네
-
뻥임뇨
-
가능한걸로 아는데 사실상 불가능 아닌가요?
-
잉여롭다 5
-
취업이 힘들다……….
-
내 생각을 얘한테 이식 시켜야되는데 어케 해야되는건지 약간 감이 안온달까 그래서...
-
푸키먼 마렵다 1
후
-
결국 헬스터디 시즌 1 2 둘다 영어 사탐빼고 국어 수학은 결국 노베는 극복...
-
영어만 9인데도 홍대가 0칸….?
-
의대생 집단휴학으로 신입생 모집정지가 가능한 일이라면 11
진지하게 교대 사대분들도 집단휴학해서 신입생 모집정지 시키고 임용적체 해결하면 될...
첫번째 댓글의 주인공이 되어보세요.