회원에 의해 삭제된 글입니다.
게시글 주소: https://old.orbi.kr/00071061621
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
컴퓨터 놔둔 곳에 아재들 싹 다 차지해서 드라마 보고 있는데 왜 제지안함ㅅㅂ
-
국어 잘하는건 복이구나 12
국잘이 되고 싶어 나도 뭐가 모자란건지 모르겟어..... 수학은 그냥 하면 되던데...
-
野, 지역화폐로 전국민 25만원 지급 추진… “20조 추경” 34
10대 민생 법안, 당론 밀어붙여 더불어민주당은 20일 지방자치단체가 발행하는...
-
서울대 간호 경쟁률 1대1(3명 뽑는데 3명지원) 수능성적은 2 3 4등급이드라...
-
저는 이전부터 등급이 낮아도 실력이 있다면 남을 가르쳐도 문제가 없고, 오히려 배울...
-
이미 잘하는데 더 하려니까 좀 그렇네 흠..
-
메가님 가심?? 3
의도치 않은 탈릅 ㄷㄷㄷ...
-
서울캠도 제발
-
오늘도 학원알바 0
에휴 돈이나 벌자
-
언제부터 신청하는거에요? 시간이 공지되어있나요?
-
대학커뮤니티 노크에서 선발한 서강대 선배가 오르비에 있는 예비 서강대생, 서대...
-
메디컬 욕심은 사실 애초부터 없었고 (그걸 노리기에도 양심없는 성적) 대학 졸업...
-
가정)28수능 이후에도 현 체재 유지 화1 58000명 -> 44000명 생2...
-
네시? 0
네시조발?마사카?
-
이명학 신택스 알고리즘 하고있는데 이거 끝내고 기출 하는게 나음? 아니면 리앤로까지...
-
메가님의 장례식입니다 20
벌점 200점 받고 산화하셨대요 조의금 받습니다 의도치 않은 탈릅이라고 전해달라네요
-
제1원인=원인없음 진성난수=원인없음 제1원인=진성난수 제1원인으로서의 진성난수가...
-
시발점이랑 마플시너지 같이 병행하면서 해서 설 전까지는 두책 모두 진도가 다...
-
노베이스 수학 4
몇년만에 공부다시해서 노벤데, 강의랑 과외중에 뭘 선택할 지 추천 부탁드립니다....
-
지듣노 0
이거 아는 사람 없나
-
조발의 역사를 써보자
-
과외쌤들 다 그래서 나이 많으신 분들임 핫하
-
처음 할때 step 2푸셨음뇨..? 풀으란 말도 있고 2회독때 풀라는 말도 있던데
-
예이
-
아니 성과 사랑의 윤리 보부아르 듣다가 무한 버퍼링 걸리네 씨펄
-
선착순이에여? 아니면 접수하고 그쪽에서 성적대로 자르나여?
-
그 사람이 바로 나에요 굵어서 좋던데
-
이런건 왜 하는건가요? 저도 의대 증원 반대하지만 아무리 생각해도 이건 아닌거...
-
[칼럼]생1, 당신이 가계도/돌연변이를 버리면 안되는 이유 5
오랜만에 칼럼을 쓰게 되었네요. 오늘 할 이야기는 생명과학1의 준킬러에 대한...
-
일단 여자임 ㅇㅇ
-
[속보]尹 “부정선거 음모론 제기 아니고 팩트 확인 차원” 3
[속보]尹 “부정선거 음모론 제기 아니고 팩트 확인 차원”
-
올해 수시로 대학 갔고.. 정시로 옮길생각을 하고있습니다. 농어촌 특별전형 해당이...
-
스틱 쓸모없다 +) 전기차는 기어가 사실상 없다. 진짜 필요없ㄷㅏ
-
이상기후머냐 0
개더운데
-
이거 한번 쓰면 못벗어남 ㄹㅇ
-
대학은 꿇리지만 않을정도로 나오면 됨 숙대정도? 성격 좋고 모자 잘어울리는 여자가 이상형이에요
-
[속보] 국회측 "尹 부정선거 주장 방치 안돼…헌재가 제한해달라" 1
연합뉴스TV 기사문의 및 제보 : 카톡/라인 jebo23
-
대학생 대상 홍보 | 교육협동조합 Topick 4기 모집 0
‘동덕여대 공학 전환’, ‘계엄령과 내란죄’ 소모적인 논쟁에 지쳤다면? 교육...
-
대학커뮤니티 노크에서 선발한 인하대 선배가 오르비에 있는 예비 인하대생, 인하대...
-
ㅇㅇ
-
ㅇ
-
나를 믿는 나를 믿어요 45
'나를 믿어줄 너'가 되어주실 분을 구해요
-
ㅇ
-
사문 1년간 한 컨텐츠 18
개념 5회독 기출 1회독 n스킬 찍먹 10지선다 2회독 2024 리바이벌 1 2...
-
핑프 ㅈㅅ합니다. 원래 과탐 하려다가 사탐으로 바꿔서 재수 하려는데 공대나 수의대...
-
정답은 내가 좋아하는 나 그런 거 아닐까요
-
오늘의 식사 현황 0끼 유지중 뜨면 먹겠습니다
-
뭐야 이거 3
-
밥먹어야되는데 2
아 으아 흐에에엑
g'(u)=lim 부분에서 h가 저런 식으로 쓰이면 안 됨
왜 안 되나요??
e^f(x+h)-e^f(x)로 적용이 되어야지
e^{f(x)+h}-e^f(x)가 되면 이상해짐
아 이해했어요 감사합니다
말 그대로 u에 대해 미분한 것인데요. 합성함수 미분을 증명하고 싶으시다면 x에 대해 미분한 것으로 증명해야 할 것입니다. 저렇게 식을 쓰면 u 자체를 변수로 보아 u로 미분한 것이 되는거죠.
아하 그렇군요 고수님 감사합니다 ㅠㅠ
여기에 첨언하자면,
뉴턴식에서는 미지수를 임의로 지정했을때(혹은 2개 이상이 나올때) '(프라임)이 뭐에 대한 미분인지 확실하게 보여주지 않는 문제를 확인할 수 있습니다.
그러기에 뭐에 대해서 미분한다는 의미기호가 확실히 들어간 라이프니츠를 이용하죠
윗 식은 f(x)에 대해 미분한 식이고, 선생님께서 내리시고 싶은 결론을 도출한 식은 x에 대해 미분한 것이므로 다른 것입니다.
제가 잘못 이해한걸수도 있는데 h'(x)=g'(f(x))가 어떻게 되는건가요
그냥 제가 임의로 g합성f = h라고 잡았습니다..
그러면 h'(x)를 미분하면 g'(f(x))f'(x)가 되어야지 g'(f(x))가 되는 이유가 뭔가요
오
h'(x)가 아니라 h(x)
h 미분하고 원함수에 f'(x)를 곱하면 맞게 나오네요
h로만 생각해서 형태만 본 것 같아요
감사합니다!!!
네 해결되셨다니 다행입니다
확실히 알았어요
다들 감사드립니다