-
생윤 찍먹해보고 아닌 것 같으면 바로 지1 생2로 롤백함 ㅅㄱ 내가 얼마나...
-
침대너무좋아 하지만 공부해야해 But 이불밖은 추워 그러나 삼각함수를 복습해야해.....
-
무물보 받슴미다 26
나도 할래
-
헤헤.
-
공스타 공개한다 2
@study_flover
-
3개 따로함?
-
무슨 시험문제보니까 길이도 길고 빽빽해 국어 생명지문 같음 저걸 시간안에 다읽고 어케품??
-
점공계산기 질문 2
여기 이렇게 추가합격 이라고뜨는거는 최초합격 아니면 다 추가합격이라고 주는거죠?...
-
무물보 받겟습니다 27
안
-
진지하게 질문받는다 15
편하게해라
-
안전자산이라매 ㅠㅠ
-
작년 추합은 14명까지 돌았음 ㅇㅇ
-
ㅅㅂ 뭔가 할 서 있을 것 같은데 라는 기분만 울컥 올라옴 후
-
서강대에서 아다떼고 삼반수하러 감 ㅅㄱ
-
공부하기 싫은데 0
호스트 바에서 얼굴마담으로 먹고 살까 그냥? ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 월1억 씹가능일 듯.
-
우오겨ㅏ애니거춭
-
https://www.instagram.com/study_flover?igsh=MXV...
-
가자 관악으로
-
쓰면서외우기 눈으로만보면서외우기 뜻보고단어까지생각나게외우기...
-
물리만 해당인가? 화학은 해당 안하나요?
-
토일월 신청했는데 토요일거 빠꾸먹음ㅠ 일요일은 됐으면 좋겠다
-
인스타 계 알려주면 맞팔 ㄱㄴ?
-
올해 중3되는 4
올해중3인고 수학진도는 1달전쯤부터 학원에서 공통수학1 시작해서 계속하고있고 개념책...
-
내일 하겠습니다
-
생1 2
아직 막전위까지밖에 안했지만 막전위 너무 재밌네요 생1은 문제가 다 퍼즐식인가요??
-
림잇만 하고있는데 사탐 처음임.. 뭐 풀면 되나요
-
대학가면 연애ㄱㄴ? 17
-
합치면 800은 깨지는데 내 수중엔 50도없는걸..
-
이거 어캐해
-
하는 강사가 아무도 없는 것임???
-
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
타이거 라들러
-
숙면!
-
투표 좀요 2
오늘 아침에 사러감
-
흠
-
알바가기 싫은데 5
고용해줄사람구해요
-
다시보니까 언매 어렵다한 이유가있었네 95점어떻게맞았냐...
-
질문해주세요 7
선넘질ㄱㄴ한데대답은하지않을수잇음
-
ㅈㄱㄴ 대체 어디서부터 해야 할까요 영어는 듣기 0~2개 틀리고 거의 맨날 3뜹니다...
-
으흐흐
-
질문해드림미다 52
-
왜 내가 질문받는다고하면 안해줌? ㄹㅇ 속상하네
-
현역 33345 재수 24224 언미(영)생지 입니다.. 지구는 저거 제 실력...
-
김동욱 2
자러갈게요 ㅂㅂ
-
질문을 받아볼래요 32
-
인강교재 말고 마더텅이나 실모 풀면 해강 없을때 있는데 그럴때 어떻게 하세요? 그냥...
수논러지만 하기 싫어
무량공처 맞기 싫으면 빨리 4의 배수 맞다고 해라....
한번뿐인 기회를 날렸군
_
_
따라서 n은 4의 배수이다.
근데 *가 아니라 + 아님? 1과 -1을 곱하면 1 또는 -1인데
곱하기임미다
아 중간에 + 있구나
실모나 풀고와라.
그게 뭐지요
수능을 하란말이야
웩
근데 귀류법 쓰면 금방 풀리긴 할 것 같은데
넘모어려워..
이거눈 할만한디
지금까지 맞기만해서
도전하기 두렵다
bi = ai*ai+1로 놓고 짝수인 경우 4k-2랑 4k로 나누면 될 거 같은데
4n-1, 4n-3은 당연히 안됨.
4n-2만 보면 되는데, ++이 연속으로 나오거나 - -가 연속으로 나와서 1인 경우는 동형, -+이나 +-가 연속으로 나와서 -1인 경우는 이형이라고 하면, 동형항과 이형항의 개수가 같아야 함. 이때 이형항이 홀수개인데, 그러면 a1이 같아질 수 없음. 부호가 짝수번 변해야 a1의 부호가 일정함…
맞나요…?
히히 덕코 감사합니당
n이 짝수인건 너무 자명함
a_(n+1)=a1이라 하고, bn=ana(n+1)이라 하자.
b_n은 무조건 -1 또는 1임.
b_1+b_2+...b_n=0이니까 b_1, b_2, ..b_n중 1이랑 -1의 개수는 똑같음.
b_1부터 b_n까지 죄다 곱하면 (a_1a_2...a_n)^2인데 a_n이 -1이든 1이든 제곱하면 1이니 b_n까지 곱한 값은 무조건 1임.
b_1, b_2, ..b_n중 1이랑 -1의 개수는 똑같다고 했는데 b_1부터 b_n까지 -1의 개수가 홀수개일 경우 곱은 -1이니 말 안됨.
따라서 b_1, b_2, ...b_n 중 -1은 짝수개이고, 1도 짝수개.
같은 짝수를 두번 더하면 4배수가 되고, n은 b_1, b_2...b_n 중 -1의 개수랑 1의 개수를 더한 값이므로 n은 4배수.
이걸 응용헤서 모고에다가 넣어도 되겠죠..
아아주 유명한 문제입니다 ㅋㅋ
마침 수1 등비수열,귀납적 문제가 필요헸어요 ㅋㅋ
원래 풀이도 올려놧는데 한 번 구경해보세요.
그러고보니 999890님이랑 사실상 똑같이 풀었네요