이건어떰
게시글 주소: https://old.orbi.kr/00071315503
모순<->(A and not A)<->거짓
모순<->거짓
무모순<->참
---------------------------------
공리는 참이라는 증명이 없다
따라서 귀류법 증명도 없다
따라서 공리를 부정하면 "무모순"이다
---------------------------------
위 둘 을 연결하면,
"공리를 부정하면 참이다"
_______________________
전제가 참이면 결론이 참이다
대우명제
결론이 거짓이면 전제가 거짓
공리는 전제에 속한다
공리를 부정하면 무모순 은
공리가 거짓이면 무모순 이다
즉
결론이 거짓이면 전제가 거짓이고 전제가 거짓이면
공리가 거짓이고 공리가 거짓이면 무모순이다
줄여서
결론을 부정하면 참이다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
생각해보니까 아까 더 싼거있었는데 비싸게 산게 저거임 야 쩔더라 니 덕코ㅋ
-
2년동안 걍 놀자고 하는거 거의 하나도 안가고 공부만했는데… 씁쓸하네 좀 이게맞나
-
그래서 돈아까워보인다고 글 많이 썼는데... 문제는 학생의 간절함이 너무 크다는거임...
-
손창완 전 한국공항공사 사장이 21일 자택에서 숨진 채 발견됐습니다. 21일 경기...
-
아직 STEP1인데..
-
돌연 휴릅 선언 14
2월 8일까지 휴릅합니다
-
왜 들어옴?
-
어차피 정배는 0
건동홍숭 외쳐! 건동홍숭
-
ㄷㄷ 7
-
어머 예쁘다. 0
오늘로써 오르비의 정수를 깨달았다 정수 약탈자.
-
오...
-
어캐하는거냐고 욕쳐먹을거같음
-
싶네요 사과도 안하는 건 좀 의아함 후기들 보면 해주는 거에 비해 많이 받으시는 거...
-
흠
-
어플로 구하면 되는건가요? 그리고 보통 고3이면 수학 과외 얼마정도 하는지 궁금합니다
-
스윙타고 다이소가서 동글이 사올까
-
카페인 마시고 잠 별로 안 자서 그런가 머리가 잘 안 돌아가네
-
나한테 싸움거는거야?
-
오 12
오오
-
단돈 5만덕
-
무안공항 '로컬라이저 개량' 당시 공항공사 사장 숨진 채 발견 2
(서울=연합뉴스) 이동환 정윤주 기자 = 경찰대학장 출신의 정치인 손창완 전...
-
싸우지 말아요 7
-
https://orbi.kr/00071495666
-
비문학 노베이슨데 이 두개 중에 뭐 사야하는건가요???
-
최애곡까지 겹침 다시 청혼...해야겠지?
-
24 (집모) 49344 25 6모 43311 25 9모 44312 25 수능...
-
5칸 6칸 7칸 있는데 4칸 추천해주고 그거써서 떨어진거는 속에서 천불이 끓어오를듯...
-
요즘 취업 새내기 때부터 차근차근 대비하는 법 [숭실대 꿀팁] 0
대학커뮤니티 노크에서 선발한 숭실대 선배가 오르비에 있는 예비 숭실대생, 숭실대...
-
아직까지 안 한 대학들은 그럴 능력이 안 되거나 수험생의 고통을 즐기는 사이코 둘...
-
분명히 영상에서는 “선관위 의혹해소“만 이야기 했는데 민주당에서 발끈하네요? 흠..
-
마플시너지 수능 0
고3인데 유형문제집으로 마플시너지 비추인가요? 그냥 알피엠이랑 김기현 킥오프만 하고...
-
진짜 제발
-
이게 왜 사지는데? ㅠㅠ 버그아냐?
-
가격이 정상화 될것.
-
아저씨는 없고요 외대 중국어문화학과 ㅈ베ㅏㄹ...
-
레어를수집해봤음 13
의미있는 몆개 빼곤 걍 싼걸로 주워담음....
-
저는 올검이 예쁜거같은데 몇몇대학 빼곤 못본 듯
-
지문읽을때 3에서4분 정도 걸리는데 읽는시간에 더 써야되나? 6 7분 이렇게 읽으면...
-
이런김에 0
아이즈원 레어 다 모아보자
-
히히
-
레어 개수제한은 없는데 10
표시는 4개만 되는거임? 인하대 레어가 안보이네
-
제 벅스버니 사주세요 귀엽잖아요?
-
신청한 레어를 전부 풀어줄 것 아주 재미있을 듯
-
경희대 조발ㄷ 4
6시에 발표 정확히 나나요 아니면 몇시간이라도 일찍 발표해주나요
-
Chill guy만 있는게 너무 chill한 것 같아서요.
-
나 순애야 30
한놈만 파 한눈 안 팔아 자신 잇어 그러니까 아무나 내 님이 되어줘.. ㅠㅠ
-
김동욱 언매 체크메이트 들었는데 다음으로 본바탕 들으면 되나요? 그 다음으로 뭐...
-
가져가세요~ 귀엽잖아
-
칼럼을 쓰기에는 13
글 실력이 보잘 거 없구나 쩝
대체 이 주장을 끊임없이 반복하는 목적이 무엇인가요.. 정말 순수하게 궁금해서 여쭙습니다
진정한 자유의 논리적 기반확보
공리를 부정하면 그 공리 안에서는 무모순이 아니라고요오오
공리를 부정하면 공리가 거짓이 되는데요
공리가 거짓이 되는게 아니라
공리를 부정하는 명제가 거짓이 되는거예요
A를 부정하면 A가 참이 아니라는말 아닌가요
이렇게 생각하셈
공리계 안에서 공리는 무조건 참임.
공리에 태클걸면 태클건 명제가 거짓임.