[칼럼] 속도 변화량과 운동량 보존(물1)
게시글 주소: https://old.orbi.kr/00071372679
**감상 전 좋아요와 팔로우는 작성자에게 큰 힘이 됩니다!!
안녕하세요!! 오늘은 수학의 "거리곱"과 같이 계산을 조금(?) 줄여줄 수 있는 풀이법 하나를 들고왔습니다.
알고 계시는 분이 적지는 않을 것이라고 생각되는 주제이지만, 긴 칼럼은 아니니 즐겁게 읽어주시면 감사하겠습니다!
우리가 흔히 "운동량 보존" 하면 떠오르는 식이 하나 있습니다.
바로 이 친구죠 (v는 충돌 후 속도, v'은 충돌 전 속도입니다!)
우리는 위의 식을
와 같이 변형하고, 이를 운동량 보존 법칙이라 부릅니다.
(원래 p앞에 델타가 들어가야하는데 수식 입력기에서 안들어가네요.. 양해 부탁드립니다)
.
.
.
근데, 밑의 식의 vA-vA' 이 친구... 어딘가 낯이 익습니다.
충돌 후 속도에서 충돌 전 속도를 뺍니다.
사건 후 속도에서 사건 전 속도를 뺍니다.
맞습니다. 바로 속도 변화량입니다.
그래서, 우리는 운동량 보존 법칙을 다음과 같은 공식으로 변형하여 쓸 수 있습니다.
사실 이론은 여기서 끝입니다. (가만 보면 별거 없긴 합니다.)
사실 이 식의 진가는 문제를 푸는 데에서 나옵니다. 문제를 보실까요?
첫번째 문제입니다. 231116입니다.
초기 B의 속도는 8m/s인 것, 3초 이후 A와 B의 속도는 모두 5m/s 인 것이 자명하니
만약 운동량 보존식을 세우게 된다면, 식은 다음과 같을 것입니다.
이번 칼럼에서는 이 식 대신에, 속도 변화량을 이용한 운동량 보존식을 한 번 써봅시다.
이렇게 충돌 or 분리 상황이 단순한 문항에서는 사실 위를 쓰나 아래를 쓰나 큰 상관이 없습니다.
일단 한 문제 더 보실까요. 230613입니다.
정석적인 풀이는 다음과 같습니다.
속도 변화량으로 푼다면 다음과 같습니다.
표를 읽는 법을 말씀드리자면, 물체 또는 계의 전후 속도를 적어두고, 선 밑에 속도 변화량을 적습니다.
속도 변화량 밑에는 운동량이 보존 되도록 하는 물체 또는 계의 질량비 혹은 실제 질량값을 적어주시면 됩니다.
(이 질량비는 속도 변화량 비율의 역수가 되겠죠!)
여기까지 보면 밑이 조금 더 눈에 가시적으로 들어오는 정도? 될 것 같습니다. (나만 그런가)
마지막은 210917인데요, 이 방안을 극한으로 쓰면 어디까지 쓸 수 있는 지를 보여드리고자 합니다.
이번에는 속도 변화량으로만 풀어보도록 하겠습니다.
일단 모든 시점에서 A ,B, 우주인의 운동량의 합은 보존됩니다.
우주인, A, B가 함께 운동하던 시점에서 3개가 모두 분리 되는 시점까지의 변화를 파악해봅시다.
이 두 시점 사이 A, B의 속도 변화량은 v라 한다면, 식을 다음과 같이 적을 수 있습니다.
자연스래 A와 B의 속도 변화량 v는 2/3v0 가 되고, 분리 직후 A의 속도는 5/3v0이 됩니다.
이번에는 우주인, A, B가 함께 운동하던 시점에서 A만 떨어져 나오는 시점까지 분석해보겠습니다.
함께 운동하는 B와 우주인을 질량이 3m인 계로 취급하고 이 계의 속도 변화량을 v라 하겠습니다.
그럼 식은 다음과 같습니다.
따라서 v는 -2/9v0가 되고, 답은 4번이 됩니다.
이걸 직접 운동량 보존 법칙 만으로 풀어보신다면 이 풀이가 계산을 얼마나 줄였는지 체감하실 수 있을 것이라 생각됩니다.
.
.
.
.
아무래도 마지막 문제와 같은 복잡한 상황이 요새는 잘 등장하지 않기 때문에 이 풀이를 그닥 중요하지 않다고 생각하실 수도 있을 것 같습니다.
하지만 아까 제가 말씀드렸듯이, 저는 개인적으로 이 풀이를 "거리곱"과 비슷하다고 생각합니다.
한 마디로 말하자면, "없어도 상관없으나 있으면 도움은 되는 정도?"
굳이 식 여러 줄 달고 다니지 않고, 두번째 문제에서 보여드린 표 풀이처럼 훨씬 가시적으로 질량비를 구할 수 있기 때문이죠. 그래도, 익혀두어서 나쁠 것은 없으니 한 번 정도는 익혀보시는 것을 추천하기는 합니다. (이 정도면 해주자)
이 풀이는 두번째 문항처럼 질량비를 구하는 데 쓰실 수도 있고, 세번째 문항처럼 속도 변화량을 구하는 데 쓰실 수도 있습니다. 보통 질량비를 구하게 된다면 속도 변화량의 비가 주어져있는 상태일 것이고, 속도 변화량을 구하게 된다면 질량비와 남은 하나의 물체 또는 계의 속도 변화량이 주어져 있을 것입니다.
.
.
.
.
아무쪼록 긴 칼럼 읽어주셔서 감사드리고, 지적할 부분이 있으시거나 궁금한 점이 있으시다면 댓글 달아주시면 감사하겠습니다! 지금까지 lshdmw이었습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
걘 있는 제도 잘 이용해서 현명한 판단으로 대학 간거고 난 1학년 던진 업보로...
-
안녕하세요 。◕‿◕。 18
뉴비에요 반가워요
-
보통 얼마하나요
-
전 함수 치역보고 정의역 범위 대응시켜서 그리는데 이게 n축이에요??
-
매월승리 2
지금 현재 5등급 얼오카 하는중이고 매월승리는 오늘 살 예정입니다. 현재 국어과외도...
-
히히
-
심찬우강민첳 10
독서요 지금 잡도해 다 들었는데 입문 강좌라 그런지 막 크게 얻어 가는게 없는...
-
나보다 둘 다 잘해야 한다고 생각해요
-
28명 뽑는건 똑같고 작년에 대략 120명 지원했었고 충원률 대략 100% 였음....
-
사탐 과목추천 3
사문 + @인데 생윤 세지 고민중입니다 세지는 친구가 지구했으면 ㄱㅊ할거라고 하서...
-
님 모솔이죠 9
에이~ 장난 장난 진짜 모솔이 있겠어요?
-
확통하느라 공통1,2주간 소홀히했더니 복습하는제 내용이 너무 낯섭니다 수2 미분쪽은...
-
영어는 해도 되죠...? 물리는 51->99 이긴 한데 해도 될까요...?
-
진짜 어이없네 2
아 ㅋㅋㅋㅋㅋㅋㅋㅋ
-
만년 4-5등급인 학생이 안정 3으로 올라가려면 생각보다 필요한 게 많음요 첨부터...
-
다 뒤져
-
님 친구 없죠 2
저랑 사겨요
-
ㅈㅅㅎㄴㄷㅈㅅㅎㄴㄷ
-
ㅈㄴ비싸네 근데 여기서 콘돔사면 쪽팔릴듯..
-
나 머하냐
-
국어 잘하는 법 2
국어를 잘한다는 생각을 버리면 됨
-
님 기하 못하죠 2
긁는 사람도 긁힌 사람도 없음
-
경희 어문이에요
-
님 과탐했죠 6
ㅋㅋ 과탐 골랐대요 바보
-
김재훈 수능 국어 기출 분석
-
ㅋㅋ그거만 못하는게 아님
-
솔직히 에필로그 그 값주고 살만한지 잘 모르겠음
-
1학년은 서울인데 세부전공이 인공지능, 데사 , 컬쳐테크면 2학년 때 수원으로 넘어가나요??
-
존나빡친다 13
개씨발
-
합격증만 나와봐라 언매100으로 과외 오지게 돌린다
-
님물리못하죠 4
최고의칭찬
-
조기발표!? 4
동대 조발 언제 할 것 같마요;;;;
-
수시도 과외하는데 정시로 백분위 95 87 1 99 87로 당당하게 중앙대 가는데...
-
이번 겨울방학 때 처음으로 생윤 사문 공부 시작한 고3 입니다 현재 임정환...
-
너무 귀엽게 인사하길래 아가 어머니한테 허락 받고 사탕 좀 줬거든 그러니까 어머니가...
-
은테 되기 위한 맞팔구
-
전 이게 제일 어려웠음 이거보다 어려운거 뭐 있나용
-
1~3주차 복영 구해봅니다..
-
적분상수에게 공감해줘ㅜㅜ
-
점공 0
최초합, 추합, 불합 중 뭘까요
-
님 국어 못하죠
-
ㄹㅇ
-
너무졸려서 1
앉아서 조는상태로 꿈꿨음
-
어서 신두형을 받들으란 말이야
-
욕먹더니 5
튀네
-
김상훈vs김승리 1
범부기준으로 누구 들어야될까
-
문제가 넘 어려움 문제집 병행하는게 나음? 마플수총 샀는데 평이별루네.. 잠깐...
-
건너뛰나요 보통? 꽃 하나도 안칠해진 애들요
-
덕코한푼도안주는것봐이야박한인간들.
첫번째 댓글의 주인공이 되어보세요.