(안녕맨)<토요 수학칼럼 - 외워두면 좋은 면적 공식>
게시글 주소: https://old.orbi.kr/0008759526
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
cf) 8월 1일 부터 대치동 오르비 현강 개강합니다
끝장인강 총정리 & 수능대비 기출시험지 10회 8주 커리인데
제 현강의 특징은 필기가 전혀 필요 없습니다 모든 필기된 교재는 미리 제공합니다
http://class.orbi.kr/group/85/ 참고하세요
(첫 강좌는 무료입니다 시간되시는분들 오셔서 강의 들어보시고 등록 판단 하시면 됩니다
그리고 그날 오시는분 한명 추첨해서 컬쳐랜드 문화 상품권 1만원권 선물 드릴게요 ㅎ)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학 모르겠어잉 0
(fㅇf)(1)이면 f(f(1))이니까 그냥 f(1) 구하면 a/4 아닌가? 왜...
-
둘다 채점했는디 ebs 백분위가 더 맛있드라구여.. 여러분들도 메가보다 ebs가 더...
-
가군 부산대학교 경영학과 나군 부산대학교 경제학과 이런식으로 지원 가능한가요?
-
헤헤ㅔㅎ헤흐흐ㅡ헤헤ㅔ흐
-
04 24수능 성적표 올린건 머임.ㄹㅇ 몰루.현역이랑 재수를 본인이 헷갈리수도 있남.
-
푼 거 다 틀리고 찍은 것만 다 맞음 억ㅋㅋㅋㅋ
-
이번주에 중앙대 외대 이화여대 논술있는데 이 성적대이면 가야겠죠?
-
그 중 15명이 산화했지.
-
1컷 88가능성 충분히 있다고하셨는데 2409가 1컷이 88이었으니 올수가 작년...
-
우우 6
아파요 속이안좋아..
-
아니 제발 0
은커녕은 붙여써야 한다고
-
맞팔구함 2
ㄱㄱ
-
어딘가 이상하다 싶은놈들은 사실 무대응으로 일관하는게 나은것같음 한번 상대해주기 시작하면 끝이없다
-
물1vs물2 2
재능빨은 물2가 더 타나요 둘다 하지말라고 하거나 차라리 사탐하라고 댓글다는 순간...
-
뭐임진짜 아니시발 원점수라도 알려주던가 그것도안됨?
-
말그대로 잘보고싶다면 개념을 많이 보는 것보다 개념 가볍게 읽고 (회독) 모의고사나...
-
평가원 이사람들 4
지금 오르비보면서 팝콘뜯고있는거 아니겠지
-
1컷 88초과라고 보시는거 맞죠?
-
없나요 하.
-
줬다 뺏는 게 더 기분 나쁘지 않음?
-
연고공 인설약 3
연대 고대 공대 vs 이대 약대 동국대 약대 입결 상관 없이 미래 전망이나 전체적인...
-
원원시절에 평가원 과탐 고정 11이었는데 이번에 투투로 바꾸고 깨질 듯
-
성적공개좀 빨리하라고 ㅋㅋㅋ
-
시대 통계 들고 있는 물공이 제일 정확할거라고 생각함. 걍 1컷 아무리 높아봐야...
-
실력이부족한데엄한사람한테욕질이야 라는 나쁜 말은 ㄴㄴ
-
칸타타가 싫은게 아니라 그사람을 미친듯이 빨아재끼고 숭배하는 ㅡ_ㅡ <ㅡ이새끼때문임
-
등급컷 질문 2
확통 공통틀 선택틀 중 뭐가 유리한가요?
-
100 97 1 98 미적 88이라 96 or 97입니다 (97 소망ㅠ)
-
이제 4명 남았군요.
-
통계상으로도 그건 진짜 말이 안되는수치임 생각해보셈 이번수능이 정답률이 6모보단...
-
곧 한국도 올라오겠다
-
칸타타 2
레쓰비 티오피
-
사수생 2
있냐?
-
생윤 VS 정법 10
미필5수 지사약따리한테 과목별 특징좀 알려주세요....
-
등교 기념 하교 6
개빡쳐서 하교하는 건 아니고 논술 준비 땜에 이번 주는 쌤과의 합의 하에 무단 조퇴 중
-
최저걸린애들처럼 간절한 친구들이 있는데 만점이 3천명이 넘을수있다느니 1컷 88인거...
-
학교가어지러워 2
애기현역이 수능 거하게 말아먹고 논술, 재수준비하는데 어제 뒤에선 애들 막 열세명쯤...
-
ㅇㅇ
-
탐구표점 0
님들 과탐이랑 사탐이 표점이 같으면 메디컬 가는데에 문제 없음?
-
공부해야할 거나 하면 좋은 거 있나요??
-
올해 데뷔해서 평이 별로 없는데 수학 김범찬샘 수강생들 평이 어떤가요
-
하면 어쩌자는 거야 이 미친 학교야
-
2월에 열리나
-
텔그 괜히샀나 2
가독성좋아서 샀는데 표본이적어서 의미가 없는느낌
-
공통 2틀 92면 2뜬다고 보는게 맞겠죠? 메가에선 백분위 96이라고 하긴하는데
-
연고대 이상만 나는거 아닌가요?
저거 외울시간에 잠자는게 이득
맞습니다 제목 그대로 필수가 아니라 "알아두면 좋은" 이에요
외우는 거 귀찮으면 이런게 있구나 하고 넘어가시면 되구요
근데 비슷한 부분이 많아서 외우는데 그리 어렵진 안을 거에요 ㅎ
현강에서 지도해보면 분모는 6 12 30 (6의 배수)이고 분자는 3승 4승 5승 순이라
금방 암기를 하더라고요
그리고 실제로 모평에서 나온적이 몇번있어서 알아두면 즉답으로 문제를 푸는경우가 많습니다
문과면 외워둬서 나쁠건없는데요 댓글이너무공격적 ㅋ ㅋ
현t도 챙겨가라하시고
감사합니다
하지만 평가는 주관적인거라 모든 분들의견 다 수렴합니다 ㅎ
그게 강사의 기본 자세구요
현우진 선생님도 저거 말해주시나요?? 빡쌤도 말해주셨던 걸로 기억하는데
수분감기벡 '이과'에서도 챙겨가라하세욥
'알아둬도 그냥그런'
무슨 말을 저런 식으로 하나....사회생활 힘들 듯..
저건 필수적으로 외워야 됨 ㅋㅋㅋㅋㅋ 한석원도 저거 기억해두라고 하고 자주나옴 저건
사회생활 가능하세요?
ㅋㅋ
공부하다보면 외워지는 거지요
당장 이번 7월 나형 30번도 3번 공식이 등장하니까요
좋네요
네 이번 칼럼이 그걸 중점으로 쓴거에요 ㅎ
공식이라는건 자주 나오고 쓰다보니깐 관용적인것을 정리한것이니깐요
저는 수학안하는 학생입니다
그래서 글이 좋은진 안좋은지는 모르겠지만 이런칼럼에 학생이 피해보는 일은 있을것같지는 않아보입니다
작년에 불미스러운일때문에 인식이 안좋으신건 알겠습니다. 저도 너무했다 생각은 들고요
근데 학생을 위해 칼럼쓰는글에 공격적인 댓글 (ㅋ , 믿고거릅니다 , 등등) 올라오고 그러는게 너무 빈번하게보이더군요
그런감정or인식으로 인해 보기싫으시면 거르면 될텐데 굳이 왜 글에 들어와서 그런글을 남기는지 모르겠네요
무슨 싸우고싶어서 안달이난 사람같아보여서
보기싫으면 보지마세요 그냥... 그런감정은 개인적으로 글을써서 표현하던가 칼럼에 댓글로 이게 뭡니까...
ㅋㅋㅋㅋㄹㅇ 애같애요
외우는게 쓸모없다니... 전 a(x-p)^m(x-q)^n 일반화해서 외우고 다니는데... 너무들 하시네요..
일반화까지 ㄷㄷ 일반화하면 뭐에여?
am!n!(p-q)^(m+n+1)/(m+n+1)!
이것말고도 일반화해서 외우면 꿀인게 꽤 있어요... 예를들면 cos합법칙?
cos(c)=cos(a)cos(b) + sin(a)sin(b)cos(r) 이렇게요
일반화는 오바인듯 전 많이쓰다가 자연럽게 외워졌는대
사관학교나 경찰대 문제 풀다보니까 많이 필요해서 그냥 외워버렸어요..
교주님이다
유용한 정보 감사합니다.
좋게 봐주셔서 감사요 ㅎ
저거 정말 개꿀입니다..... 왜 저런걸 거부하시는지... 미적분 할 때 저런거 진짜 개꿀인데
도움이 되셨다니 다행이네요 ㅎ
서울 의대간 형도 예전에 꿀팁이라고 알려줬던 건데 까먹고 잇엇던 마당에 감사합니다!
삼각함수도 넓이 알아두면 편한데...
선생님 좌표에서 평면넓이 구할때 신발끈공식에 대해 어떻게 생각하시나요??
필수죠 솔직히 좌표 알때 신발끈 공식이 최고에요 ㅎ
그거 삼각형만되는거죠?? 원점하나걸친
보통 삼각형에서 많이 쓰죠
특히 원점을 포함하면 (0, 0) , (a, b) , (c, d) 일때 1/2 | ad -bc |라는 공식으로 바로 구할수있어요
원점 아니라도 상관 없고, 임의의 다각형에 대해서도 성립합니다
네 맞습니다 ㅎ 참고로 시계 반대 방향으로 배열하면 항상 양의 값을 갖아서
구지 절대값을 할 필요가 없습니다
헐 그랬군요 무조건원점하나걸치고 삼각형만되는줄알았는데..
이미지세탁 ㄱㅇㄷ
솔직히 경우가 어떻든 학생들이랑 소통할때가 가장 기쁩니다
예전에 개인 카페 운영할때랑 수만휘 멘토에 있을때는 하루에 100개 넘는 댓글을 매일 하고 그랬는데
그때가 가장 행복했었네요 ㅎ ( 지금은 기력이 안됨 ㅠㅠ)
감사합니당
^_^ v
2,3,4공식도 필요한가요?? 1번공식은 알고있는데 234는 한완수에 나올법한 공식같아요
저만 모르고 있었던거는 아니죠??
말 그대로 "알면 좋은" 입니다
필수는 아닙니다
선생님
선생님 칼럼 편히 볼 수 있도록 링크 달아주셔서 너무 감사합니다
이렇게 칼럼 제목을 한꺼번에 보니 너무 좋아요
앞으로도 좋은 칼럼 부탁드립니다
전 선생님 강의 스타일 좋아합니다
실제로 확통 강의 재미있게 보기도 했구요
안녕맨선생님 파이팅 !!!
감사합니다 기분 짱이네요!!!
매번 도움되는 칼럼 올려주셔서 감사합니다 !
굳이 여기와서 시비터는 분들은 사회생활 어찌하실지 궁금하네요
감사합니다
저는 솔직히 다들 조카뻘 되는분들이라 그리 연연하지 않아요
그냥 갖고 노시다가 제 자리에만 놓으면 됩니다 ㅎㅎ