합성함수 인식부터 치환적분까지
게시글 주소: https://old.orbi.kr/00069306012
문제 같이 읽어보겠습니다.
뭔가 그림 그리고 싶다는 생각이 듭니다.
이 정도로 그리면 되겠습니다. 노란색 동그라미 친 건 미분계수입니다.
문제를 마저 읽어볼게요
아, f(x)가 아니라 f(2x)래요. 그것도 그려줍시다.
x=1에서 미분계수가 2인거 바로 보이시나요?
이쯤에서 잠깐 딴 얘기로 샜다가 돌아오겠습니다.
(딴 얘기)___________________________________________________________________________________
이건 cos함수에 5x를 합성한 함수입니다.
5x는 x보다 다섯배 빠르게 진행되기 때문에,
cos5x 함수는 cosx 함수에 비해 모든 대응되는 구간에서 다섯배 빠르게 변합니다.
미분계수가 다섯배인 셈이죠.
또 다섯배 빠른 진행속도 덕분에, 함수는 다섯배 축소됩니다.
(딴 얘기 끝)________________________________________________________________________________
이런 이유로, 앞선 문제에서
이렇게 그릴 수 있던 겁니다.
이제 문제 마지막 부분 읽어볼게요.
음.. 이건
f(2x)의 그림만 보고 a는 1이고 b는 1/2이라고 읽으면 됩니다.
긴 설명 대신 그림 2개면 충분할 겁니다.
함수 그림은 냅두고
x, y 축만 샥 바꿔주면 됩니다.
우리가 잘 알고 있는
이 사실을 수식적으로 이해해도 좋지만,
저는 때에 따라 조금 더 기하적인 느낌으로 이해합니다.
이렇게 말입니다.
앞선 예시도 이런거였죠.
하지만 이 얘기는 f(x)와 f(3x)처럼 단순히 일차함수를 합성했을 때만 쓸 수 있는 얘기가 아닙니다.
다음 문제로 넘어가봅시다.
지수함수 f(x)에 대해 다음 값을 구해야 하는 상황입니다.
가독성을 위해 엄밀하게 적지는 않았지만 다 이해하셨을거라 생각합니다.
일단 절댓값 f(x)부터 그려봅니다.
-1에서 미불이고, 이때 오른쪽 미분계수는 ln2입니다.
이제 어떤 빨간 점이 이 곡선경로를 쭉 따라간다고 해봅시다.
이 빨간점은 y=x세제곱 함수의 속도로 곡선경로 위를 움직이는 중입니다.
y=-1일 때, x세제곱 함수의 미분계수는 3입니다.
따라서
여기 -1 부근에서 빨간점은 경로를 3의 속도로 지나가는 중입니다.
아까 문제에서 h'(a+) 구하라고 했었죠.
3의 속도로 기울기 ln2인 구간을 지나는 중이니까 답은 3ln2입니다.
근데 삼차함수에다가 대고 막... 속도 개념을 부여해도 되는걸까요?
또 잠깐 딴 얘기로 샜다가 올게요.
(딴 얘기22)___________________________________________________________________________________
아까 cos 5x는 진행속도가 일정한 경우였습니다.
그런데 진행속도가 일정하지 않을수도 있습니다.
(예전에 제가 썼던 칼럼 일부를 인용해왔습니다)
앞서 언급했던
이 사실이 이러한 이유로
이렇게 인식될 수 있는 겁니다.
시간 있으신 분들은 아래 기출 문제 풀어보세요.
귀찮으면 넘어가시구요
답은 19+20= 39입니다.
알려드린 걸 통해 풀면 인식하기가 훨씬 쉬울겁니다.
(딴 얘기 끝)________________________________________________________________________________
아직 할 얘기가 많이 남아있습니다.
합성함수 인식은 결국 치환적분의 얘기로 이어집니다.
다만 이번편에 다 쓰면 너무 길 거 같아서, 다음 편으로 넘길게요.
좋아요랑 팔로우 누르고 기다려주시면 곧 돌아오겠습니다 ㅎㅎ
0 XDK (+10)
-
10
-
첫사랑 연애썰 3
첫 (짝)사랑(이 다른 남자와 연애한) 썰 도 첫사랑썰인가에 대하여
-
손창빈 스타일 3
손창빈 선생님 국어 스타일이 어떤느낌인가요 그읽그풀 vs 구조독해
-
ㄷㄷㄷ……… 수능장에서 잘못 알고 갔다가 틀리면 어떡해
-
되는 거임?
-
르게만들지는 마요 워우워우워
-
가 자꾸 친구추천에 뜨는데....친추 함 걸어볼까요....
-
탑급이네
-
새로 사실건가요 아니면 작년에 쓰던거 들고갈건가요 두개있는데 2년정도 된거라...
-
편의점 커피 2
머가 맛있나요 너무 달지 않은 것 중에..
-
앞에 코사인제곱 붙어있는애를 코사인함수는 우함수니까 -붙여서 2x-13/12파이로...
-
실모풀때 지장갈정도로 조금잔건 아니겠죠?
-
what doesnt kill you makes you stronger 1
예전엔 저말이 위로가 되었는데 요즘은 그냥 모든 일이 날 죽이려드는것 같음 날...
-
??
-
한 10억쯤 땡기면 범인 한 100억쯤 땡기면 뭐지
-
퀄리티 ㄱㅊ은 것만 몇 개 알려주세욤
-
현장에선 건드려보지도 못 했는데 기출 풀어보니까 쉽지않네..
-
솔직히 사문 6
적중예감만 13회차 다 풀고 가도 공부량 상위 11% 안쪽 아닐지...
-
유빈이아닌가
-
수능때 후드티 2
입고가서 모자덮어쓰고풀어도되나요 안정감있고좋을텐데...
-
다들 24
설랬던 일화좀 꺼내봐 나 외롭다 설래곳ㅍ음
-
하하 연애메타 0
오르비 잘 안굴러가겠네
-
인생 좆망해버린거 같은 느낌이 온다
-
형냐들 저 마음에 안 들죠.
-
이러면 나 속상해서 기만할거야
-
수학 하방 유지 7
다른 과목은 몰라도 수학만큼은 하방이 88점입니다 정확히는 공통은 거의 항상 다...
-
국어 푸는 순서 4
문학말고 독서를 먼저 푸는거 어떰?? 요즘 문학이 어렵고 독서는 쉬워진...
-
제 경험담인데
-
다들 안녕히 주무세요 18
오늘 너무 바쁜 하루라 피곤해 뒤.질거같아서 자야겠어 행복하시길 바랍니다 모두들
-
임정환 실모기준 보통 한개씩 틀렸음
-
ㅈㄴ 오랜만에 떠올려보는 그이름...
-
왜냐면 나거든
-
와뭐냐
-
맨날 존나잘풀었다 싶으면 갑자기 막 2번 20번 이런거 단순실수로 틀림 결국 수능...
-
그래서 태어나서 짝사랑만 해봤다면 안 믿으시겠죠
-
포기해야함?
-
돌이켜보니까 뭐 오답 제대로 한것도 두달간 없는거같고 과장인지 진짜인지 모르겠는데...
-
탐구 평균이니까 13 맞아도 2로 들어가는거죠? 국 1 영 1 탐구1 1 탐구2 3...
-
물리 아예 노베이스 인데 생지 하다가 생명이 너무 안맞는거같아서 물지로 바꾸려는데...
-
좋은 아침입니다 5
12시라길래 오 설마 낮인가? 싶었는데 밤이군요..
-
진짜 미신같은데 노트에 이상형 엄청 자세하게 몇개여도 상관엊ㅅ으니까 100개여도댐...
-
미분 파트 만큼 좋은가요? 개인적으로 미분 파트 감명깊게 듣고 적분 찔끔 맛만 봤다...
-
분석해 드립니다
-
물리력 키워야 하는데 10
매일 씻네
-
풀어도 될까요 시중실모랑 다른 느낌인거 같아서
-
삼수하면된다는마인드로 예상댓글)재수기만
-
발 시려워
-
한국사 반영 거의 안되는거로 알고있는데 혹시 수시마냥 한국사 5등급 이하면 정시...
-
당근,번장 보니까 없더라구요 ㅜㅜ 파실 분 계실까요
-
나만 알고 있어야하는데
오 cos2x 같은 일차항의 계수만 달라져서 합성된 상황만 x축 방향 축소로? 알고 있었는데
이차함수같은 게 합성되어 있어도 되는 느낌이네요
특정한 한 지점에서는 이차함수도 지수함수도 직선으로 근사할 수 있기 때문이라고 생각해도 되겠습니다
무민은좋아요
라끄리식수학적사고ㄷㄷ
https://orbi.kr/00064989284
그동안 쓴 칼럼 리스트입니다. 필요하신 분들 참고하세요
진짜 좋은 칼럼
우와...
와 합성함수의 미분계수를 저런 관점으로 볼 수도 있군요!
물론 제 수능 선택과목은 미적분이 아니지만 그래도 신기하네요
식으로 파악하던걸 가시화해주네요
간단하보이지만 누군가 이런걸 정리해주지 않으면 써먹기 쫄리던데 감사합니다!
신기방귀
f(x)를 g'(x)의 속도로 지나가고 있다고 해야 맞을듯
g(x)의 속도 (=g’(x) )로 지나간다는 의미였습니다.
저도 둘 중에 뭘 쓸까 고민했어요
말씀해주신 것처럼
g’(x) 의 속도라 해야 와닿는 거 같기도 하네요
좋은 지적 감사합니다 ㅎㅎ
그러면 "g(x)와 같은 속도“는 어떤가요?
합성함수기울기=각위치 겉속 기울기의 곱
엔축공부하면서 떠올렸던 건데
속도개념으로 볼수도있군요!
goat...
와 제가 이해한방식이랑 거의 유사합니다
정돈된 버전?
남들한테 퍼지는게 아까운 수준의 글이네요
딴얘기, 딴얘기 끝이라고 표현해놓은게 왜이리 귀엽게 보이지ㅋㅋ 잘봤습니다
저 다 봤어요 이제 내려주세요
개추
좋은칼럼 잘보고갑니당